The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 5 of 5

Showing per page

Order by Relevance | Title | Year of publication

A counterexample to a conjecture of Bass, Connell and Wright

Piotr Ossowski — 1998

Colloquium Mathematicae

Let F=X-H: k n k n be a polynomial map with H homogeneous of degree 3 and nilpotent Jacobian matrix J(H). Let G=(G1,...,Gn) be the formal inverse of F. Bass, Connell and Wright proved in [1] that the homogeneous component of G i of degree 2d+1 can be expressed as G i ( d ) = T α ( T ) - 1 σ i ( T ) , where T varies over rooted trees with d vertices, α(T)=CardAut(T) and σ i ( T ) is a polynomial defined by (1) below. The Jacobian Conjecture states that, in our situation, F is an automorphism or, equivalently, G i ( d ) is zero for sufficiently large d....

Rings of constants of generic 4D Lotka-Volterra systems

Janusz ZielińskiPiotr Ossowski — 2013

Czechoslovak Mathematical Journal

We show that the rings of constants of generic four-variable Lotka-Volterra derivations are finitely generated polynomial rings. We explicitly determine these rings, and we give a description of all polynomial first integrals of their corresponding systems of differential equations. Besides, we characterize cofactors of Darboux polynomials of arbitrary four-variable Lotka-Volterra systems. These cofactors are linear forms with coefficients in the set of nonnegative integers. Lotka-Volterra systems...

Page 1

Download Results (CSV)