# On the formal inverse of polynomial endomorphisms

Colloquium Mathematicae (1998)

- Volume: 78, Issue: 1, page 97-104
- ISSN: 0010-1354

## Access Full Article

top## How to cite

topOssowski, Piotr. "On the formal inverse of polynomial endomorphisms." Colloquium Mathematicae 78.1 (1998): 97-104. <http://eudml.org/doc/210608>.

@article{Ossowski1998,

author = {Ossowski, Piotr},

journal = {Colloquium Mathematicae},

keywords = {rooted trees; Jacobian Conjecture; polynomial automorphisms; polynomial endomorphisms; Jacobian conjecture},

language = {eng},

number = {1},

pages = {97-104},

title = {On the formal inverse of polynomial endomorphisms},

url = {http://eudml.org/doc/210608},

volume = {78},

year = {1998},

}

TY - JOUR

AU - Ossowski, Piotr

TI - On the formal inverse of polynomial endomorphisms

JO - Colloquium Mathematicae

PY - 1998

VL - 78

IS - 1

SP - 97

EP - 104

LA - eng

KW - rooted trees; Jacobian Conjecture; polynomial automorphisms; polynomial endomorphisms; Jacobian conjecture

UR - http://eudml.org/doc/210608

ER -

## References

top- [1] H. Bass, E. H. Connell and D. Wright, The Jacobian conjecture: Reduction of degree and formal expansion of the inverse, Bull. Amer. Math. Soc. (N.S.) 7 (1982), 287-330. Zbl0539.13012
- [2] L. M. Drużkowski and K. Rusek, The formal inverse and the Jacobian conjecture, Ann. Polon. Math. 46 (1985), 85-90. Zbl0644.12010
- [3] G. Gorni and G. Zampieri, Yagzhev polynomial mappings: on the structure of the Taylor expansion of their local inverse, Ann. Polon. Math. 64 (1996), 285-290. Zbl0868.12001
- [4] P. Ossowski, A counterexample to a conjecture of Bass, Connell and Wright, Colloq. Math. 77 (1998), 315-320. Zbl0942.13011
- [5] V. L. Popov and E. B. Vinberg, Invariant theory, in: Algebraic Geometry IV, Encyclopaedia Math. Sci. 55, Springer, 1994, 123-278.
- [6] C. E. Praeger and P. Schultz, On the automorphisms of rooted trees with height distributions, in: Combinatorial Mathematics X (Adelaide, 1982), Lecture Notes in Math. 1036, Springer, 1983, 319-334.
- [7] R. P. Stanley, Enumerative Combinatorics, Vol. 1, Cambridge Stud. Adv. Math. 49, Cambridge Univ. Press, 1997.
- [8] D. Wright, Formal inverse expansion and the Jacobian conjecture, J. Pure Appl. Algebra 48 (1987), 199-219. Zbl0666.12017
- [9] A. V. Yagzhev, On Keller's problem, Sibirsk. Mat. Zh. 21 (1980), no. 5, 141-150 (in Russian). Zbl0466.13009

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.