The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 18 of 18

Showing per page

Order by Relevance | Title | Year of publication

An example of a generalized completely continuous representation of a locally compact group

Detlev Poguntke — 1993

Studia Mathematica

There is constructed a compactly generated, separable, locally compact group G and a continuous irreducible unitary representation π of G such that the image π(C*(G)) of the group C*-algebra contains the algebra of compact operators, while the image π ( L 1 ( G ) ) of the L 1 -group algebra does not containany nonzero compact operator. The group G is a semidirect product of a metabelian discrete group and a “generalized Heisenberg group”.

Banach algebras associated with Laplacians on solvable Lie groups and injectivity of the Harish-Chandra transform

Detlev Poguntke — 2010

Colloquium Mathematicae

For any connected Lie group G and any Laplacian Λ = X²₁ + ⋯ + X²ₙ ∈ 𝔘𝔤 (X₁,...,Xₙ being a basis of 𝔤) one can define the commutant 𝔅 = 𝔅(Λ) of Λ in the convolution algebra ℒ¹(G) as well as the commutant ℭ(Λ) in the group C*-algebra C*(G). Both are involutive Banach algebras. We study these algebras in the case of a "distinguished Laplacian" on the "Iwasawa part AN" of a semisimple Lie group. One obtains a fairly good description of these algebras by objects derived from the semisimple group....

Page 1

Download Results (CSV)