Large holes in quasi-random graphs.
Frankl and Rödl [3] proved a strong regularity lemma for 3-uniform hypergraphs, based on the concept of δ-regularity with respect to an underlying 3-partite graph. In applications of that lemma it is often important to be able to "glue" together separate pieces of the desired subhypergraph. With this goal in mind, in this paper it is proved that every pair of typical edges of the underlying graph can be connected by a hyperpath of length at most seven. The typicality of edges is defined in terms...
Let P denote a 3-uniform hypergraph consisting of 7 vertices a, b, c, d, e, f, g and 3 edges {a, b, c}, {c, d, e}, and {e, f, g}. It is known that the r-color Ramsey number for P is R(P; r) = r + 6 for r ≤ 9. The proof of this result relies on a careful analysis of the Turán numbers for P. In this paper, we refine this analysis further and compute the fifth order Turán number for P, for all n. Using this number for n = 16, we confirm the formula R(P; 10) = 16.
Page 1