The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 5 of 5

Showing per page

Order by Relevance | Title | Year of publication

Even [a,b]-factors in graphs

Mekkia KouiderPreben Dahl Vestergaard — 2004

Discussiones Mathematicae Graph Theory

Let a and b be integers 4 ≤ a ≤ b. We give simple, sufficient conditions for graphs to contain an even [a,b]-factor. The conditions are on the order and on the minimum degree, or on the edge-connectivity of the graph.

Domination in partitioned graphs

Zsolt TuzaPreben Dahl Vestergaard — 2002

Discussiones Mathematicae Graph Theory

Let V₁, V₂ be a partition of the vertex set in a graph G, and let γ i denote the least number of vertices needed in G to dominate V i . We prove that γ₁+γ₂ ≤ [4/5]|V(G)| for any graph without isolated vertices or edges, and that equality occurs precisely if G consists of disjoint 5-paths and edges between their centers. We also give upper and lower bounds on γ₁+γ₂ for graphs with minimum valency δ, and conjecture that γ₁+γ₂ ≤ [4/(δ+3)]|V(G)| for δ ≤ 5. As δ gets large, however, the largest possible value...

On well-covered graphs of odd girth 7 or greater

Bert RanderathPreben Dahl Vestergaard — 2002

Discussiones Mathematicae Graph Theory

A maximum independent set of vertices in a graph is a set of pairwise nonadjacent vertices of largest cardinality α. Plummer [14] defined a graph to be well-covered, if every independent set is contained in a maximum independent set of G. One of the most challenging problems in this area, posed in the survey of Plummer [15], is to find a good characterization of well-covered graphs of girth 4. We examine several subclasses of well-covered graphs of girth ≥ 4 with respect to the odd girth of the...

Page 1

Download Results (CSV)