The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 1 of 1

Showing per page

Order by Relevance | Title | Year of publication

Counting irreducible polynomials over finite fields

Qichun WangHaibin Kan — 2010

Czechoslovak Mathematical Journal

In this paper we generalize the method used to prove the Prime Number Theorem to deal with finite fields, and prove the following theorem: π ( x ) = q q - 1 x log q x + q ( q - 1 ) 2 x log q 2 x + O x log q 3 x , x = q n where π ( x ) denotes the number of monic irreducible polynomials in F q [ t ] with norm x .

Page 1

Download Results (CSV)