Let H be a Krull monoid with class group G. Then every nonunit a ∈ H can be written as a finite product of atoms, say . The set (a) of all possible factorization lengths k is called the set of lengths of a. If G is finite, then there is a constant M ∈ ℕ such that all sets of lengths are almost arithmetical multiprogressions with bound M and with difference d ∈ Δ*(H), where Δ*(H) denotes the set of minimal distances of H. We show that max Δ*(H) ≤ maxexp(G)-2,(G)-1 and that equality holds if every...
Let K be an algebraic number field with non-trivial class group G and be its ring of integers. For k ∈ ℕ and some real x ≥ 1, let denote the number of non-zero principal ideals with norm bounded by x such that a has at most k distinct factorizations into irreducible elements. It is well known that behaves for x → ∞ asymptotically like . We prove, among other results, that for all integers n₁,n₂ with 1 < n₁|n₂.
Let G be a finite abelian group of rank r and let X be a zero-sum free sequence over G whose support supp(X) generates G. In 2009, Pixton proved that for r ≤ 3. We show that this result also holds for abelian groups G of rank 4 if the smallest prime p dividing |G| satisfies p ≥ 13.
Download Results (CSV)