The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 3 of 3

Showing per page

Order by Relevance | Title | Year of publication

The set of minimal distances in Krull monoids

Alfred GeroldingerQinghai Zhong — 2016

Acta Arithmetica

Let H be a Krull monoid with class group G. Then every nonunit a ∈ H can be written as a finite product of atoms, say a = u 1 · . . . · u k . The set (a) of all possible factorization lengths k is called the set of lengths of a. If G is finite, then there is a constant M ∈ ℕ such that all sets of lengths are almost arithmetical multiprogressions with bound M and with difference d ∈ Δ*(H), where Δ*(H) denotes the set of minimal distances of H. We show that max Δ*(H) ≤ maxexp(G)-2,(G)-1 and that equality holds if every...

A quantitative aspect of non-unique factorizations: the Narkiewicz constants III

Weidong GaoJiangtao PengQinghai Zhong — 2013

Acta Arithmetica

Let K be an algebraic number field with non-trivial class group G and K be its ring of integers. For k ∈ ℕ and some real x ≥ 1, let F k ( x ) denote the number of non-zero principal ideals a K with norm bounded by x such that a has at most k distinct factorizations into irreducible elements. It is well known that F k ( x ) behaves for x → ∞ asymptotically like x ( l o g x ) 1 - 1 / | G | ( l o g l o g x ) k ( G ) . We prove, among other results, that ( C n C n ) = n + n for all integers n₁,n₂ with 1 < n₁|n₂.

Page 1

Download Results (CSV)