The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 20 of 20

Showing per page

Order by Relevance | Title | Year of publication

Transition from decay to blow-up in a parabolic system

Pavol Quittner — 1998

Archivum Mathematicum

We show a locally uniform bound for global nonnegative solutions of the system u t = Δ u + u v - b u , v t = Δ v + a u in ( 0 , + ) × Ω , u = v = 0 on ( 0 , + ) × Ω , where a > 0 , b 0 and Ω is a bounded domain in n , n 2 . In particular, the trajectories starting on the boundary of the domain of attraction of the zero solution are global and bounded.

Liouville-type theorems and asymptotic behavior of nodal radial solutions of semilinear heat equations

Thomas BartschPeter PoláčikPavol Quittner — 2011

Journal of the European Mathematical Society

We prove a Liouville type theorem for sign-changing radial solutions of a subcritical semilinear heat equation u t = Δ u + u p - 1 u . We use this theorem to derive a priori bounds, decay estimates, and initial and final blow-up rates for radial solutions of rather general semilinear parabolic equations whose nonlinearities have a subcritical polynomial growth. Further consequences on the existence of steady states and time-periodic solutions are also shown.

Page 1 Next

Download Results (CSV)