Generic properties of von Kármán equations

Pavol Quittner

Commentationes Mathematicae Universitatis Carolinae (1982)

  • Volume: 023, Issue: 2, page 399-413
  • ISSN: 0010-2628

How to cite

top

Quittner, Pavol. "Generic properties of von Kármán equations." Commentationes Mathematicae Universitatis Carolinae 023.2 (1982): 399-413. <http://eudml.org/doc/17190>.

@article{Quittner1982,
author = {Quittner, Pavol},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {von Kármán equations; Fredholm map},
language = {eng},
number = {2},
pages = {399-413},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Generic properties of von Kármán equations},
url = {http://eudml.org/doc/17190},
volume = {023},
year = {1982},
}

TY - JOUR
AU - Quittner, Pavol
TI - Generic properties of von Kármán equations
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 1982
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 023
IS - 2
SP - 399
EP - 413
LA - eng
KW - von Kármán equations; Fredholm map
UR - http://eudml.org/doc/17190
ER -

References

top
  1. Franců J., On Signorini problem for von Kármán equations /The case of angular domain/, Aplikace matematiky 24 (1979), 355-371. (1979) MR0547039
  2. Geba K., The Leray Schauder degree and framed bordism, in La théorie des points fixes et ses applications è l'analyse. Séminaire de Mathématiques Supérieures 1973, Presses de l'Université de Montreal 1975. (1973) 
  3. Hlaváček I., Naumann J., Inhomogeneous boundary value prohlems for the von Kármán equations, I, Aplikace matematiky 19 (1974), 253-269. (1974) MR0377307
  4. John O., Nečas J., On the solvability of von Kámán equations, Aplikace matematiky 20 (1975), 48-62. (1975) MR0380099
  5. Kato T., Perturbation theory for linear operators, Springer-Verlag, Beгlin - Heidelberg - New York, 1980. (1980) Zbl0435.47001
  6. Nečas J., Les méthodes directes en théorie des équations elliptiques, Academia, Prague, 1967. (1967) MR0227584
  7. Saut J. C., Temam R., Generic properties of Navieг-Stokes equations: genericity with respect to the boundary values, Indiana Univ. Math. J. 29 (1980), 427-446. (1980) MR0570691
  8. Smale S., An infinite aimensional version of Sarďs theorem, Amer. J. Math. 87 (1965), 861-866. (1965) MR0185604
  9. Souček J., Souček V., The Morse Sard theorem for real analytic functions, Comment. Math. Univ. Carolinae 13 (1972), 45-51. (1972) MR0308345

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.