On stability zones for discrete-time periodic linear Hamiltonian systems.
Dynamical systems with several equilibria occur in various fields of science and engineering: electrical machines, chemical reactions, economics, biology, neural networks. As pointed out by many researchers, good results on qualitative behaviour of such systems may be obtained if a Liapunov function is available. Fortunately for almost all systems cited above the Liapunov function is associated in a natural way as an energy of a certain kind and it is at least nonincreasing along systems solutions....
It is considered the mathematical model of a benchmark hydroelectric power plant containing a water reservoir (lake), two water conduits (the tunnel and the turbine penstock), the surge tank and the hydraulic turbine; all distributed (Darcy-Weisbach) and local hydraulic losses are neglected,the only energy dissipator remains the throttling of the surge tank. Exponential stability would require asymptotic stability of the difference operator associated to the model. However in this case this stability...
The following time delay system is considered, where may have discontinuities, in particular at the origin. The solution is defined using the “redefined nonlinearity” concept. For such systems sliding modes are discussed and a frequency domain inequality for global asymptotic stability is given.
Page 1