Problems concerning weak Asplund spaces
CONTENTSINTRODUCTION............................................................................................................................... 3Chapter I. ALGEBRAIC PROPERTIES OF SOLUTIONS OF ABSTRACT DIFFERENTIALEQUATIONS§ 1. Ordinary abstract differential equations1. Taylor’s formula for an abstract derivative.......................................................................... 42 π-solutions....................................................................................................................................
CONTENTSIntroduction.................................................................................................................... 5Section 1. The group of weak automorphisms...................................................... 6Section 2. Weak automorphisms of finitely generated free algebras................ 9Section 3. Representation of groups as weak automorphism groups ofalgebras............................................................................................................................
CONTENTSCHAPTER I§ 1. Introduction.......................................................... 3§ 2. Preliminary notions and properties................ 5§ 3. Relative quasicomponents.............................. 11§ 4. Elementary proportion of pulverable sets..... 15CHAPTER II§ 6. Connected subsets of pulverable sets......... 16§ 6. Summation theorem......................................... 17§ 7. Quasicomponents of pulverized sets............ 18CHAPTER III§ 8. Continuous images of pulverable sets............
CONTEXTS0. Introduction.......................................................................................................................................................................... 5Part IMODELS OF EPIDEMICS FOli INFECTIOUS DISEASES1. Informal description of the phenomenon of epidemics and constructionof mathematical models........................................................................................................................................................ 52. General...
Introduction1. Preliminaries.............................................................................................52. The obstruction to the deformation of a map out of a subspace.............123. The case of smooth closed oriented manifolds.......................................174. The invariant for PD-spaces.....................................................215. The local case of obstruction theory.......................................................24References.................................................................................................29...
Page 1 Next