The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 3 of 3

Showing per page

Order by Relevance | Title | Year of publication

Deformation coproducts and differential maps

R. L. HudsonS. Pulmannová — 2008

Studia Mathematica

Let 𝒯 be the Itô Hopf algebra over an associative algebra 𝓛 into which the universal enveloping algebra 𝓤 of the commutator Lie algebra 𝓛 is embedded as the subalgebra of symmetric tensors. We show that there is a one-to-one correspondence between deformations Δ[h] of the coproduct in 𝒯 and pairs (d⃗[h],d⃖[h]) of right and left differential maps which are deformations of the differential maps for 𝒯 [Hudson and Pulmannová, J. Math. Phys. 45 (2004)]. Corresponding to the multiplicativity and...

Explicit construction of a unitary double product integral

R. L. HudsonPaul Jones — 2011

Banach Center Publications

In analogy with earlier work on the forward-backward case, we consider an explicit construction of the forward-forward double stochastic product integral ( 1 + d r ) with generator d r = λ ( d A d A - d A d A ) . The method of construction is to approximate the product integral by a discrete double product ( j , k ) m × Γ ( R m , n ( j , k ) ) = Γ ( ( j , k ) m × ( R m , n ( j , k ) ) ) of second quantised rotations R m , n ( j , k ) in different planes using the embedding of m into L²(ℝ) ⊕ L²(ℝ) in which the standard orthonormal bases of m and ℂⁿ are mapped to the orthonormal sets consisting of normalised indicator functions of...

Page 1

Download Results (CSV)