The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 7 of 7

Showing per page

Order by Relevance | Title | Year of publication

Baire spaces

CONTENTSIntroduction............................................................................................................ 5I. Basic properties of Baire spaces................................................................... 61. Nowhere dense sets............................................................................................... 62. First and second category sets............................................................................. 83. Baire spaces................................................................................................................

The Freudenthal compactification

CONTENTS1. Introduction...................................................52. ℬ-filters and ℬ-compactifications..................63. The weight of φX.........................................124. Other properties of φX................................155. Extensions of maps and subspaces............216. Subordinate subsets of C*(X)......................257. Quasi-component spaces...........................308. References.................................................33

Relations approximated by continuous functions in the Vietoris topology

L'. HoláR. A. McCoy — 2007

Fundamenta Mathematicae

Let X be a Tikhonov space, C(X) be the space of all continuous real-valued functions defined on X, and CL(X×ℝ) be the hyperspace of all nonempty closed subsets of X×ℝ. We prove the following result: Let X be a locally connected locally compact paracompact space, and let F ∈ CL(X×ℝ). Then F is in the closure of C(X) in CL(X×ℝ) with the Vietoris topology if and only if: (1) for every x ∈ X, F(x) is nonempty; (2) for every x ∈ X, F(x) is connected; (3) for every isolated x ∈ X, F(x) is a singleton...

Page 1

Download Results (CSV)