The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 1 of 1

Showing per page

Order by Relevance | Title | Year of publication

Construction of the solutions of boundary value problems for the biharmonic operator in a rectangle

Nachman AronszajnR. D. BrownR. S. Butcher — 1973

Annales de l'institut Fourier

A technique is developed for constructing the solution of Δ 2 u = F in R = { ( x , y ) : | x | < a , | y | < b } , subject to boundary conditions u = φ , u n = ψ on R . The problem is reduced to that of finding the orthogonal projection P w of w in L 2 ( R ) onto the subspace H of square integrable functions harmonic in R . This problem is solved by decomposition H into the closed direct (not orthogonal) sum of two subspaces H ( 1 ) , H ( 2 ) for which complete orthogonal bases are known. P is expressed in terms of the projections P ( 1 ) , P ( 2 ) of L 2 ( R ) onto H ( 1 ) , H ( 2 ) respectively. The resulting construction...

Page 1

Download Results (CSV)