The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 11 of 11

Showing per page

Order by Relevance | Title | Year of publication

Mittelergodische Halbgruppen linearer Operatoren

Rainer J. Nagel — 1973

Annales de l'institut Fourier

A semigroup H in L s ( E ) , E a Banach space, is called mean ergodic, if its closed convex hull in L s ( E ) has a zero element. Compact groups, compact abelian semigroups or contractive semigroups on Hilbert spaces are mean ergodic. Banach lattices prove to be a natural frame for further mean ergodic theorems: let H be a bounded semigroup of positive operators on a Banach lattice E with order continuous norm. H is mean ergodic if there is a H -subinvariant quasi-interior point of E + and a H ' -subinvariant...

Page 1

Download Results (CSV)