The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
A semigroup in , a Banach space, is called mean ergodic, if its closed convex hull in has a zero element. Compact groups, compact abelian semigroups or contractive semigroups on Hilbert spaces are mean ergodic.
Banach lattices prove to be a natural frame for further mean ergodic theorems: let be a bounded semigroup of positive operators on a Banach lattice with order continuous norm. is mean ergodic if there is a -subinvariant quasi-interior point of and a -subinvariant...
Download Results (CSV)