The aim of the Kaczmarz algorithm is to reconstruct an element in a Hilbert space from data given by inner products of this element with a given sequence of vectors. The main result characterizes sequences of vectors leading to reconstruction of any element in the space. This generalizes some results of Kwapień and Mycielski.
We study the position of compact operators in the space of all continuous linear operators and its subspaces in terms of ideals. One of our main results states that for Banach spaces and the subspace of all compact operators is an -ideal in the space of all continuous linear operators whenever and are - and -ideals in and , respectively, with and . We also prove that the -ideal in is separably determined. Among others, our results complete and improve some well-known results...
Download Results (CSV)