-ideals of compact operators
Rainis Haller; Marje Johanson; Eve Oja
Czechoslovak Mathematical Journal (2012)
- Volume: 62, Issue: 3, page 673-693
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topHaller, Rainis, Johanson, Marje, and Oja, Eve. "$M(r,s)$-ideals of compact operators." Czechoslovak Mathematical Journal 62.3 (2012): 673-693. <http://eudml.org/doc/246277>.
@article{Haller2012,
abstract = {We study the position of compact operators in the space of all continuous linear operators and its subspaces in terms of ideals. One of our main results states that for Banach spaces $X$ and $Y$ the subspace of all compact operators $\mathcal \{K\}(X,Y)$ is an $M(r_1 r_2, s_1 s_2)$-ideal in the space of all continuous linear operators $\mathcal \{L\}(X,Y)$ whenever $\mathcal \{K\}(X,X)$ and $\mathcal \{K\}(Y,Y)$ are $M(r_1,s_1)$- and $M(r_2,s_2)$-ideals in $\mathcal \{L\}(X,X)$ and $\mathcal \{L\}(Y,Y)$, respectively, with $r_1+s_1/2>1$ and $r_2+s_2/2>1$. We also prove that the $M(r,s)$-ideal $\mathcal \{K\}(X,Y)$ in $\mathcal \{L\}(X,Y)$ is separably determined. Among others, our results complete and improve some well-known results on $M$-ideals.},
author = {Haller, Rainis, Johanson, Marje, Oja, Eve},
journal = {Czechoslovak Mathematical Journal},
keywords = {$M(r,s)$-ideal and $M$-ideal of compact operators; property $M^\ast (r,s)$; compact approximation property; -ideal; -ideal; property ; compact approximation property},
language = {eng},
number = {3},
pages = {673-693},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {$M(r,s)$-ideals of compact operators},
url = {http://eudml.org/doc/246277},
volume = {62},
year = {2012},
}
TY - JOUR
AU - Haller, Rainis
AU - Johanson, Marje
AU - Oja, Eve
TI - $M(r,s)$-ideals of compact operators
JO - Czechoslovak Mathematical Journal
PY - 2012
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 62
IS - 3
SP - 673
EP - 693
AB - We study the position of compact operators in the space of all continuous linear operators and its subspaces in terms of ideals. One of our main results states that for Banach spaces $X$ and $Y$ the subspace of all compact operators $\mathcal {K}(X,Y)$ is an $M(r_1 r_2, s_1 s_2)$-ideal in the space of all continuous linear operators $\mathcal {L}(X,Y)$ whenever $\mathcal {K}(X,X)$ and $\mathcal {K}(Y,Y)$ are $M(r_1,s_1)$- and $M(r_2,s_2)$-ideals in $\mathcal {L}(X,X)$ and $\mathcal {L}(Y,Y)$, respectively, with $r_1+s_1/2>1$ and $r_2+s_2/2>1$. We also prove that the $M(r,s)$-ideal $\mathcal {K}(X,Y)$ in $\mathcal {L}(X,Y)$ is separably determined. Among others, our results complete and improve some well-known results on $M$-ideals.
LA - eng
KW - $M(r,s)$-ideal and $M$-ideal of compact operators; property $M^\ast (r,s)$; compact approximation property; -ideal; -ideal; property ; compact approximation property
UR - http://eudml.org/doc/246277
ER -
References
top- Ausekle, J., Oja, E., 10.1007/BF02384767, Ark. Mat. 36 (1998), 233-239. (1998) Zbl1037.47504MR1650589DOI10.1007/BF02384767
- Cabello, J. C., Nieto, E., 10.1216/rmjm/1181071823, Rocky Mt. J. Math. 28 (1998), 61-93. (1998) Zbl0936.46014MR1639829DOI10.1216/rmjm/1181071823
- Cabello, J. C., Nieto, E., 10.4064/sm-129-2-185-196, Stud. Math. 129 (1998), 185-196. (1998) Zbl0913.46019MR1608091DOI10.4064/sm-129-2-185-196
- Cabello, J. C., Nieto, E., On -type structures and the fixed point property, Houston J. Math. 26 (2000), 549-560. (2000) Zbl0984.46009MR1811941
- Cabello, J. C., Nieto, E., Oja, E., 10.1006/jmaa.1997.5888, J. Math. Anal. Appl. 220 (1998), 334-348. (1998) Zbl0917.47040MR1613976DOI10.1006/jmaa.1997.5888
- Cho, C.-M., Johnson, W. B., A characterization of subspaces of for which is an -ideal in , Proc. Am. Math. Soc. 93 (1985), 466-470. (1985) MR0774004
- Feder, M., Saphar, P., 10.1007/BF02757132, Isr. J. Math. 21 (1975), 38-49. (1975) Zbl0325.47028MR0377591DOI10.1007/BF02757132
- Godefroy, G., Saphar, P. D., 10.1215/ijm/1255988868, Ill. J. Math. 32 (1988), 672-695. (1988) Zbl0631.46015MR0955384DOI10.1215/ijm/1255988868
- Haller, R., Johanson, M., Oja, E., -inequality for in , Acta Comment. Univ. Tartu. Math. 11 (2007), 69-76. (2007) MR2391972
- Haller, R., Oja, E., 10.1007/s000130050114, Arch. Math. 69 (1997), 227-233. (1997) Zbl0914.46019MR1464553DOI10.1007/s000130050114
- Harmand, P., Werner, D., Werner, W., -ideals in Banach Spaces and Banach Algebras. Lecture Notes in Mathematics, Vol. 1547, Springer Berlin (1993). (1993) MR1238713
- Heinrich, S., The reflexivity of the Banach space , Funkcional. Anal. i Prilož. 8 (1974), 97-98 Russian. (1974) Zbl0295.46040MR0342991
- Hennefeld, J., 10.1512/iumj.1979.28.28065, Indiana Univ. Math. J. 28 (1979), 927-934. (1979) Zbl0464.46020MR0551156DOI10.1512/iumj.1979.28.28065
- John, K., Werner, D., 10.1023/A:1022433018736, Czech. Math. J. 50 (125) (2000), 51-57. (2000) Zbl1040.46020MR1745458DOI10.1023/A:1022433018736
- Johnson, J., 10.1016/0022-1236(79)90042-9, J. Funct. Anal. 32 (1979), 304-311. (1979) Zbl0412.47024MR0538857DOI10.1016/0022-1236(79)90042-9
- Kahre, Ü., Kirikal, L., Oja, E., 10.1006/jmaa.2000.7413, J. Math. Anal. Appl. 259 (2001), 439-452. (2001) Zbl0997.46016MR1842070DOI10.1006/jmaa.2000.7413
- Kalton, N. J., 10.1007/BF01432152, Math. Ann. 208 (1974), 267-278. (1974) Zbl0266.47038MR0341154DOI10.1007/BF01432152
- Kalton, N. J., Banach spaces for which the ideal of compact operators is an -ideal, C. R. Acad. Sci. Paris, Sér. I Math. 313 (1991), 509-513. (1991) Zbl0755.46006MR1131865
- Kalton, N. J., 10.1215/ijm/1255987254, Ill. J. Math. 37 (1993), 147-169. (1993) Zbl0824.46029MR1193134DOI10.1215/ijm/1255987254
- Kalton, N. J., Werner, D., Property , -ideals, and almost isometric structure of Banach spaces, J. Reine Angew. Math. 461 (1995), 137-178. (1995) Zbl0823.46018MR1324212
- Kivisoo, K., Oja, E., 10.1090/S0002-9939-05-08267-5, Proc. Am. Math. Soc. 133 (2005), 3485-3496. (2005) Zbl1078.39025MR2163583DOI10.1090/S0002-9939-05-08267-5
- Lima, Å., 10.4064/sm-113-3-249-263, Stud. Math. 113 (1995), 249-263. (1995) Zbl0826.46013MR1330210DOI10.4064/sm-113-3-249-263
- Lima, Å., Nygaard, O., Oja, E., 10.1007/BF02810673, Isr. J. Math. 119 (2000), 325-348. (2000) Zbl0983.46024MR1802659DOI10.1007/BF02810673
- Lima, Å., Oja, E., 10.1017/S144678870001017X, J. Aust. Math. Soc. 77 (2004), 91-110. (2004) Zbl1082.46016MR2069027DOI10.1017/S144678870001017X
- Lima, Å., Oja, E., Rao, T. S. S. R. K., Werner, D., 10.1307/mmj/1029005074, Mich. Math. J. 41 (1994), 473-490. (1994) Zbl0823.46023MR1297703DOI10.1307/mmj/1029005074
- Nygaard, O., Põldvere, M., 10.4064/sm195-3-4, Stud. Math. 195 (2009), 243-255. (2009) Zbl1192.46011MR2559175DOI10.4064/sm195-3-4
- Oja, E., Strong uniqueness of the extension of linear continuous functionals according to the Hahn-Banach theorem, Mat. Zametki 43 (1988), 237-246, 302 Russian translation in Math. Notes 43 (1988), 134-139. (1988) MR0939524
- Oja, E., Dual de l'espace des opérateurs linéaires continus, C. R. Acad. Sci. Paris, Sér. I Math. 309 (1989), 983-986 French. (1989) Zbl0684.47025MR1054748
- Oja, E., Extensions of Functionals and the Structure of the Space of Continuous Linear Operators, Tartu Univ. Publ. Tartu (1991), Russian. (1991) MR1114543
- Oja, E., On -ideals of compact operators and Lorentz sequence spaces, Eesti Tead. Akad. Toim., Füüs. Mat. 40 (1991), 31-36. (1991) Zbl0804.46028MR1124516
- Oja, E., A note on -ideals of compact operators, Tartu Ülikooli Toimetised 960 (1993), 75-92. (1993) Zbl1214.46005MR1231939
- Oja, E., 10.1112/S002557930001202X, Mathematika 44 (1997), 120-132. (1997) Zbl0878.46013MR1464382DOI10.1112/S002557930001202X
- Oja, E., 10.1090/S0002-9939-98-04600-0, Proc. Am. Math. Soc. 126 (1998), 2747-2753. (1998) Zbl0899.46014MR1469429DOI10.1090/S0002-9939-98-04600-0
- Oja, E., 10.1016/S0764-4442(99)80433-9, C. R. Acad. Sci. Paris, Sér. I Math. 328 (1999), 1167-1170 French. (1999) Zbl0934.46012MR1701379DOI10.1016/S0764-4442(99)80433-9
- Oja, E., 10.1090/S0002-9947-00-02521-6, Trans. Am. Math. Soc. 352 (2000), 2801-2823. (2000) Zbl0954.46010MR1675226DOI10.1090/S0002-9947-00-02521-6
- Oja, E., Põldvere, M., On subspaces of Banach spaces where every functional has a unique norm-preserving extension, Stud. Math. 117 (1996), 289-306. (1996) Zbl0854.46014MR1373851
- Oja, E., Põldvere, M., 10.1017/S0308210500019375, Proc. R. Soc. Edinb., Sect. A 129 (1999), 1251-1262. (1999) Zbl0938.46018MR1728530DOI10.1017/S0308210500019375
- Oja, E., Zolk, I., 10.1017/S0308210507001266, Proc. R. Soc. Edinb., Sect. A 139 (2009), 551-565. (2009) Zbl1180.46013MR2506787DOI10.1017/S0308210507001266
- Põldvere, M., 10.1216/rmjm/1181069389, Rocky Mt. J. Math. 36 (2006), 1651-1663. (2006) MR2285307DOI10.1216/rmjm/1181069389
- Werner, D., 10.1006/jath.1994.1002, J. Approximation Theory 76 (1994), 21-30. (1994) Zbl0797.41019MR1257062DOI10.1006/jath.1994.1002
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.