It is our aim to contribute to the flourishing collection of knowledge centered on the space of minimal prime subgroups of a given lattice-ordered group. Specifically, we are interested in the inverse topology. In general, this space is compact and , but need not be Hausdorff. In 2006, W. Wm. McGovern showed that this space is a boolean space (i.e. a compact zero-dimensional and Hausdorff space) if and only if the -group in question is weakly complemented. A slightly weaker topological property...
We study solvability of equations of the form in the groups of order automorphisms of archimedean-complete totally ordered groups of rank 2. We determine exactly which automorphisms of the unique abelian such group have square roots, and we describe all automorphisms of the general ones.
Hewitt [Rings of real-valued continuous functions. I., Trans. Amer. Math. Soc. 64 (1948), 45–99] defined the -topology on , denoted , and demonstrated that certain topological properties of could be characterized by certain topological properties of . For example, he showed that is pseudocompact if and only if is a metrizable space; in this case the -topology is precisely the topology of uniform convergence. What is interesting with regards to the -topology is that it is possible, with...
Download Results (CSV)