Currently displaying 1 – 3 of 3

Showing per page

Order by Relevance | Title | Year of publication

Fall coloring of graphs I

Rangaswami BalakrishnanT. Kavaskar — 2010

Discussiones Mathematicae Graph Theory

A fall coloring of a graph G is a proper coloring of the vertex set of G such that every vertex of G is a color dominating vertex in G (that is, it has at least one neighbor in each of the other color classes). The fall coloring number χ f ( G ) of G is the minimum size of a fall color partition of G (when it exists). Trivially, for any graph G, χ ( G ) χ f ( G ) . In this paper, we show the existence of an infinite family of graphs G with prescribed values for χ(G) and χ f ( G ) . We also obtain the smallest non-fall colorable...

The Wiener number of powers of the Mycielskian

Rangaswami BalakrishnanS. Francis Raj — 2010

Discussiones Mathematicae Graph Theory

The Wiener number of a graph G is defined as 1 / 2 u , v V ( G ) d ( u , v ) , d the distance function on G. The Wiener number has important applications in chemistry. We determine a formula for the Wiener number of an important graph family, namely, the Mycielskians μ(G) of graphs G. Using this, we show that for k ≥ 1, W ( μ ( S k ) ) W ( μ ( T k ) ) W ( μ ( P k ) ) , where Sₙ, Tₙ and Pₙ denote a star, a general tree and a path on n vertices respectively. We also obtain Nordhaus-Gaddum type inequality for the Wiener number of μ ( G k ) .

The Wiener number of Kneser graphs

Rangaswami BalakrishnanS. Francis Raj — 2008

Discussiones Mathematicae Graph Theory

The Wiener number of a graph G is defined as 1/2∑d(u,v), where u,v ∈ V(G), and d is the distance function on G. The Wiener number has important applications in chemistry. We determine the Wiener number of an important family of graphs, namely, the Kneser graphs.

Page 1

Download Results (CSV)