The Wiener number of Kneser graphs
Rangaswami Balakrishnan; S. Francis Raj
Discussiones Mathematicae Graph Theory (2008)
- Volume: 28, Issue: 2, page 219-228
- ISSN: 2083-5892
Access Full Article
topAbstract
topHow to cite
topRangaswami Balakrishnan, and S. Francis Raj. "The Wiener number of Kneser graphs." Discussiones Mathematicae Graph Theory 28.2 (2008): 219-228. <http://eudml.org/doc/270235>.
@article{RangaswamiBalakrishnan2008,
abstract = {The Wiener number of a graph G is defined as 1/2∑d(u,v), where u,v ∈ V(G), and d is the distance function on G. The Wiener number has important applications in chemistry. We determine the Wiener number of an important family of graphs, namely, the Kneser graphs.},
author = {Rangaswami Balakrishnan, S. Francis Raj},
journal = {Discussiones Mathematicae Graph Theory},
keywords = {Wiener number; Kneser graph; odd graph},
language = {eng},
number = {2},
pages = {219-228},
title = {The Wiener number of Kneser graphs},
url = {http://eudml.org/doc/270235},
volume = {28},
year = {2008},
}
TY - JOUR
AU - Rangaswami Balakrishnan
AU - S. Francis Raj
TI - The Wiener number of Kneser graphs
JO - Discussiones Mathematicae Graph Theory
PY - 2008
VL - 28
IS - 2
SP - 219
EP - 228
AB - The Wiener number of a graph G is defined as 1/2∑d(u,v), where u,v ∈ V(G), and d is the distance function on G. The Wiener number has important applications in chemistry. We determine the Wiener number of an important family of graphs, namely, the Kneser graphs.
LA - eng
KW - Wiener number; Kneser graph; odd graph
UR - http://eudml.org/doc/270235
ER -
References
top- [1] R. Balakrishanan, N. Sridharan and K. Viswanathan, The Wiener index of odd graphs, Indian Inst. Sci. 86 (2006) 527-531. Zbl1226.05105
- [2] R. Balakrishanan, K. Viswanathan and K.T. Raghavendra, Wiener index of two special trees, MATCH Commun. Math. Comupt. Chem. 57 (2007) 385-392. Zbl1150.05012
- [3] R. Balakrishnan and K. Ranganathan, A Textbook of Graph Theory (Springer, New York, 2000). Zbl0938.05001
- [4] N.L. Biggs, Algebraic Graph Theory (Cambridge University Press, London, 1974). Zbl0284.05101
- [5] A.A. Dobrynin, R. Entringer and I. Gutman, Wiener index of trees: theory and applications, Acta Appl. Math. 66 (2001) 211-249, doi: 10.1023/A:1010767517079. Zbl0982.05044
- [6] A.A. Dobrynin, I. Gutman, S. Klavžar and P. Zigert, Wiener index of hexagonal systems, Acta Appl. Math. 72 (2002) 247-294, doi: 10.1023/A:1016290123303. Zbl0993.05059
- [7] P. Frankl and Z. Furedi, Extremal problems concerning Kneser graphs, J. Combin. Theory (B) 40 (1986) 270-284, doi: 10.1016/0095-8956(86)90084-5. Zbl0564.05002
- [8] I. Gutman and O. Polansky, Mathematical Concepts in Organic Chemistry (Springer-Verlag, Berlin, 1986). Zbl0657.92024
- [9] H. Hajabolhassan and X. Zhu, Circular chromatic number of Kneser graphs, J. Combin. Theory (B) 881 (2003) 299-303, doi: 10.1016/S0095-8956(03)00032-7. Zbl1025.05026
- [10] A. Johnson, F.C. Holroyd, and S. Stahl, Multichormatic numbers, star chromatic numbers and Kneser graphs, J. Graph Theory 26 (1997) 137-145, doi: 10.1002/(SICI)1097-0118(199711)26:3<137::AID-JGT4>3.0.CO;2-S Zbl0884.05041
- [11] K.W. Lih and D.F. Liu, Circular chromatic number of some reduced Kneser graphs, J. Graph Theory 41 (2002) 62-68, doi: 10.1002/jgt.10052. Zbl0996.05049
- [12] L. Lovasz, Kneser's conjecture, chromatic number and homotopy, J. Combin. Theory (A) 25 (1978) 319-324, doi: 10.1016/0097-3165(78)90022-5. Zbl0418.05028
- [13] M. Valencia-Pabon and J.-C. Vera, On the diameter of Kneser graphs, Discrete Math. 305 (2005) 383-385, doi: 10.1016/j.disc.2005.10.001. Zbl1100.05030
- [14] S.-P. Eu, B. Yang, and Y.-N Yeh, Generalised Wiener indices in hexagonal chains, Intl., J., Quantum Chem. 106 (2006) 426-435, doi: 10.1002/qua.20732.
- [15] S. Stahl, n-tuple coloring and associated graphs, J. Combin. Theory (B) 20 (1976) 185-203, doi: 10.1016/0095-8956(76)90010-1. Zbl0293.05115
- [16] S. Stahl, The multichromatic number of some Kneser graphs, Discrete Math. 185 (1998) 287-291, doi: 10.1016/S0012-365X(97)00211-2. Zbl0956.05045
- [17] K. Tilakam, Personal communication.
- [18] H. Wiener, Structural determination of Paraffin boiling points, J. Amer. Chem. Soc. 69 (1947) 17-20, doi: 10.1021/ja01193a005.
- [19] L. Xu and X. Guo, Catacondensed hexagonal systems with large Wiener numbers, MATCH Commun. Math. Comput. Chem. 55 (2006) 137-158. Zbl1088.05071
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.