The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 3 of 3

Showing per page

Order by Relevance | Title | Year of publication

Déviations de moyennes ergodiques, flots de Teichmüller et cocycle de Kontsevich-Zorich

Raphaël Krikorian

Séminaire Bourbaki

Étant donnée une fonction régulière de moyenne nulle sur le tore de dimension 2 , il est facile de voir que ses intégrales ergodiques au-dessus d’un flot de translation “générique”sont bornées. Il y a une dizaine d’années, A. Zorich a observé numériquement une croissance en puissance du temps de ces intégrales ergodiques au-dessus de flots d’hamiltoniens (non-exacts) “génériques”sur des surfaces de genre supérieur ou égal à 2 , et Kontsevich et Zorich ont proposé une explication (conjecturelle) de...

Herman’s last geometric theorem

Bassam FayadRaphaël Krikorian — 2009

Annales scientifiques de l'École Normale Supérieure

We present a proof of Herman’s Last Geometric Theorem asserting that if F is a smooth diffeomorphism of the annulus having the intersection property, then any given F -invariant smooth curve on which the rotation number of F is Diophantine is accumulated by a positive measure set of smooth invariant curves on which F is smoothly conjugated to rotation maps. This implies in particular that a Diophantine elliptic fixed point of an area preserving diffeomorphism of the plane is stable. The remarkable...

Page 1

Download Results (CSV)