The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 7 of 7

Showing per page

Order by Relevance | Title | Year of publication

Forms equivalent to curvatures.

Horacio PortaLázaro Recht — 1986

Revista Matemática Iberoamericana

The 2-forms, Ω and Ω' on a manifold M with values in vector bundles ξ --> M and ξ' --> M are equivalent if there exist smooth fibered-linear maps ξ --> ξ' and W: ξ --> ξ' with Ω' = UΩ and Ω = WΩ'. It is shown that an ordinary 2-form equivalent to the curvature of a linear connection has locally a non-vanishing integrating factor at each point in the interior of the set rank (ω) = 2 or in the set rank (ω) > 2. Under favorable conditions the same holds...

A geometry on the space of probabilities (II). Projective spaces and exponential families.

Henryk GzylLázaro Recht — 2006

Revista Matemática Iberoamericana

In this note we continue a theme taken up in part I, see [Gzyl and Recht: The geometry on the class of probabilities (I). The finite dimensional case. Rev. Mat. Iberoamericana 22 (2006), 545-558], namely to provide a geometric interpretation of exponential families as end points of geodesics of a non-metric connection in a function space. For that we characterize the space of probability densities as a projective space in the class of strictly positive functions, and these will be regarded as a...

Intrinsic geometric on the class of probability densities and exponential families.

Henryk GzylLázaro Recht — 2007

Publicacions Matemàtiques

We present a way of thinking of exponential farnilies as geodesic surfaces in the class of positive functions considered as a (multiplicative) sub-group G of the group G of all invertible elements in the algebra A of all complex bounded functions defined on a measurable space. For that we have to study a natural geometry on that algebra. The class D of densities with respect to a given rneasure will happen to be representatives of equivalence classes defining a projective space in A. The natural...

Page 1

Download Results (CSV)