Ricci and scalar curvatures of submanifolds of a conformal Sasakian space form
We introduce a conformal Sasakian manifold and we find the inequality involving Ricci curvature and the squared mean curvature for semi-invariant, almost semi-invariant, -slant, invariant and anti-invariant submanifolds tangent to the Reeb vector field and the equality cases are also discussed. Also the inequality involving scalar curvature and the squared mean curvature of some submanifolds of a conformal Sasakian space form are obtained.