Topological degree for maximal monotone operators and application to parametric optimization problems.
2000 Mathematics Subject Classification: 49J40, 49J35, 58E30, 47H05 We establish variational principles for monotone and maximal bifunctions of Brøndsted-Rockafellar type by using our characterization of bifunction’s maximality in reflexive Banach spaces. As applications, we give an existence result of saddle point for convex-concave function and solve an approximate inclusion governed by a maximal monotone operator.
El objeto de esta nota es presentar una noción del grado topológico para funciones reales convexas sci (semicontinuas inferiormente) basándose en la teoría del grado introducida por F. Browder.
Le principe variationnel d'Ekeland est un outil qui a fait preuve de beaucoup d'importance en analyse non linéaire, dans lequelle il a joui d'une grande variante d'applications allant de la géométrie des espaces de Banach (c.f. Brezis & Browder [5], Bishop & Phelps [4]) à la théorie de l'optimisation (c.f. Ekeland [7,8]) et du calcul différentiel généralisé (c.f. Aubin [2,3], Penot [10],...) jusqu'au calcul des variations (c.f. Clarke [6], Ekeland [7]) et la théorie des semi-groupes non...
In this paper we deal with the maximal monotonicity of A + B when the two maximal monotone operators A and B defined in a Hilbert space X are satisfying the condition: U λ (dom B - dom A) is a closed linear subspace of X.
Page 1