The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
We prove a new 3G-Theorem for the Laplace Green function G on an arbitrary Jordan domain D in ℝ². This theorem extends the recent one proved on a Dini-smooth Jordan domain.
We prove global pointwise estimates for the Green function of a parabolic operator with potential in the parabolic Kato class on a cylindrical domain Ω. We apply these estimates to obtain a new and shorter proof of the Harnack inequality [16], and to study the boundary behavior of nonnegative solutions.
We consider the general Schrödinger operator on a half-space in ℝⁿ, n ≥ 3. We prove that the L-Green function G exists and is comparable to the Laplace-Green function provided that μ is in some class of signed Radon measures. The result extends the one proved on the half-plane in [9] and covers the case of Schrödinger operators with potentials in the Kato class at infinity considered by Zhao and Pinchover. As an application we study the cone of all positive L-solutions continuously vanishing...
Download Results (CSV)