L. Makar-Limanov, P. van Rossum, V. Shpilrain and J.-T. Yu solved the stable equivalence problem for the polynomial ring k[x,y] when k is a field of characteristic 0. In this note we give an affirmative solution for an arbitrary field k.
We study the following cancellation problem over an algebraically closed field of characteristic zero. Let X, Y be affine varieties such that for some m. Assume that X is non-uniruled at infinity. Does it follow that X ≅ Y? We prove a result implying the affirmative answer in case X is either unirational or an algebraic line bundle. However, the general answer is negative and we give as a counterexample some affine surfaces.
A. Crachiola and L. Makar-Limanov [J. Algebra 284 (2005)] showed the following: if X is an affine curve which is not isomorphic to the affine line , then ML(X×Y) = k[X]⊗ ML(Y) for every affine variety Y, where k is an algebraically closed field. In this note we give a simple geometric proof of a more general fact that this property holds for every affine variety X whose set of regular points is not k-uniruled.
Using the notion of uniruledness we indicate a class of algebraic varieties which have a stronger version of the cancellation property. Moreover, we give an affirmative solution to the stable equivalence problem for non-uniruled hypersurfaces.
Download Results (CSV)