The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
We interpolate the Gauss–Manin connection in -adic families of nearly overconvergent modular forms. This gives a family of Maass–Shimura type differential operators from the space of nearly overconvergent modular forms of type to the space of nearly overconvergent modular forms of type with -adic weight shifted by . Our construction is purely geometric, using Andreatta–Iovita–Stevens and Pilloni’s geometric construction of eigencurves, and should thus generalize to higher rank groups.
Let be a cuspidal newform with complex multiplication (CM) and let be an odd prime at which is non-ordinary. We construct admissible -adic -functions for the symmetric powers of , thus verifying conjectures of Dabrowski and Panchishkin in this special case. We combine this with recent work of Benois to prove the trivial zero conjecture in this setting. We also construct “mixed” plus and minus -adic -functions and prove an analogue of Pollack’s decomposition of the admissible -adic -functions....
Download Results (CSV)