Real Monge-Ampère equations and Kähler-Ricci solitons on toric log Fano varieties
We show, using a direct variational approach, that the second boundary value problem for the Monge-Ampère equation in with exponential non-linearity and target a convex body is solvable iff is the barycenter of Combined with some toric geometry this confirms, in particular, the (generalized) Yau-Tian-Donaldson conjecture for toric log Fano varieties saying that admits a (singular) Kähler-Einstein metric iff it is K-stable in the algebro-geometric sense. We thus obtain a new proof and...