The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 8 of 8

Showing per page

Order by Relevance | Title | Year of publication

The minimal resultant locus

Robert Rumely — 2015

Acta Arithmetica

Let K be a complete, algebraically closed nonarchimedean valued field, and let φ(z) ∈ K(z) have degree d ≥ 2. We study how the resultant of φ varies under changes of coordinates. For γ ∈ GL₂(K), we show that the map γ o r d ( R e s ( φ γ ) ) factors through a function o r d R e s φ ( · ) on the Berkovich projective line, which is piecewise affine and convex up. The minimal resultant is achieved either at a single point in P ¹ K , or on a segment, and the minimal resultant locus is contained in the tree in P ¹ K spanned by the fixed points and poles...

Equidistribution of Small Points, Rational Dynamics, and Potential Theory

Matthew H. BakerRobert Rumely — 2006

Annales de l’institut Fourier

Given a rational function ϕ ( T ) on 1 of degree at least 2 with coefficients in a number field k , we show that for each place v of k , there is a unique probability measure μ ϕ , v on the Berkovich space Berk , v 1 / v such that if { z n } is a sequence of points in 1 ( k ¯ ) whose ϕ -canonical heights tend to zero, then the z n ’s and their Gal ( k ¯ / k ) -conjugates are equidistributed with respect to μ ϕ , v . The proof uses a polynomial lift F ( x , y ) = ( F 1 ( x , y ) , F 2 ( x , y ) ) of ϕ to construct a two-variable Arakelov-Green’s function g ϕ , v ( x , y ) for each v . The measure μ ϕ , v is obtained by...

Page 1

Download Results (CSV)