Equidistribution of Small Points, Rational Dynamics, and Potential Theory
Matthew H. Baker[1]; Robert Rumely[2]
- [1] Georgia Institute of Technology, School of Mathematics, Atlanta, GA 30332-0160, USA
- [2] University of Georgia, Department of Mathematics, Athens, GA 30602-7403, USA
Annales de l’institut Fourier (2006)
- Volume: 56, Issue: 3, page 625-688
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topBaker, Matthew H., and Rumely, Robert. "Equidistribution of Small Points, Rational Dynamics, and Potential Theory." Annales de l’institut Fourier 56.3 (2006): 625-688. <http://eudml.org/doc/10160>.
@article{Baker2006,
abstract = {Given a rational function $\varphi (T)$ on $\mathbb\{P\}^1$ of degree at least 2 with coefficients in a number field $k$, we show that for each place $v$ of $k$, there is a unique probability measure $\mu _\{\varphi ,v\}$ on the Berkovich space $\mathbb\{P\}^1_\{\rm Berk,v\} / \mathbb\{C\}_v$ such that if $\lbrace z_n \rbrace $ is a sequence of points in $\mathbb\{P\}^1(\overline\{k\})$ whose $\varphi $-canonical heights tend to zero, then the $z_n$’s and their $\{\rm Gal\}(\overline\{k\}/k)$-conjugates are equidistributed with respect to $\mu _\{\varphi ,v\}$.The proof uses a polynomial lift $F(x,y) = (F_1(x,y),F_2(x,y))$ of $\varphi $ to construct a two-variable Arakelov-Green’s function $g_\{\varphi ,v\}(x,y)$ for each $v$. The measure $\mu _\{\varphi ,v\}$ is obtained by taking the Berkovich space Laplacian of $g_\{\varphi ,v\}(x,y)$. The main ingredients in the proof are an energy minimization principle for $g_\{\varphi ,v\}(x,y)$ and a formula for the homogeneous transfinite diameter of the $v$-adic filled Julia set $K_\{F,v\} \subset \mathbb\{C\}_v^2$ for each place $v$.},
affiliation = {Georgia Institute of Technology, School of Mathematics, Atlanta, GA 30332-0160, USA; University of Georgia, Department of Mathematics, Athens, GA 30602-7403, USA},
author = {Baker, Matthew H., Rumely, Robert},
journal = {Annales de l’institut Fourier},
keywords = {Canonical heights; rational dynamics; equidistribution; arithmetic dynamics; potential theory; capacity theory; canonical heights},
language = {eng},
number = {3},
pages = {625-688},
publisher = {Association des Annales de l’institut Fourier},
title = {Equidistribution of Small Points, Rational Dynamics, and Potential Theory},
url = {http://eudml.org/doc/10160},
volume = {56},
year = {2006},
}
TY - JOUR
AU - Baker, Matthew H.
AU - Rumely, Robert
TI - Equidistribution of Small Points, Rational Dynamics, and Potential Theory
JO - Annales de l’institut Fourier
PY - 2006
PB - Association des Annales de l’institut Fourier
VL - 56
IS - 3
SP - 625
EP - 688
AB - Given a rational function $\varphi (T)$ on $\mathbb{P}^1$ of degree at least 2 with coefficients in a number field $k$, we show that for each place $v$ of $k$, there is a unique probability measure $\mu _{\varphi ,v}$ on the Berkovich space $\mathbb{P}^1_{\rm Berk,v} / \mathbb{C}_v$ such that if $\lbrace z_n \rbrace $ is a sequence of points in $\mathbb{P}^1(\overline{k})$ whose $\varphi $-canonical heights tend to zero, then the $z_n$’s and their ${\rm Gal}(\overline{k}/k)$-conjugates are equidistributed with respect to $\mu _{\varphi ,v}$.The proof uses a polynomial lift $F(x,y) = (F_1(x,y),F_2(x,y))$ of $\varphi $ to construct a two-variable Arakelov-Green’s function $g_{\varphi ,v}(x,y)$ for each $v$. The measure $\mu _{\varphi ,v}$ is obtained by taking the Berkovich space Laplacian of $g_{\varphi ,v}(x,y)$. The main ingredients in the proof are an energy minimization principle for $g_{\varphi ,v}(x,y)$ and a formula for the homogeneous transfinite diameter of the $v$-adic filled Julia set $K_{F,v} \subset \mathbb{C}_v^2$ for each place $v$.
LA - eng
KW - Canonical heights; rational dynamics; equidistribution; arithmetic dynamics; potential theory; capacity theory; canonical heights
UR - http://eudml.org/doc/10160
ER -
References
top- P. Autissier, Points entiers sur les surfaces arithmétiques, J. Reine Angew. Math. 531 (2001), 201-235 Zbl1007.11041MR1810122
- M. Baker, L. C. Hsia, Canonical heights, transfinite diameters, and polynomial dynamics, J. Reine Angew. Math. 585 (2005), 61-92 Zbl1071.11040MR2164622
- M. Baker, R. Rumely, Harmonic analysis on metrized graphs Zbl1123.43006
- V. G. Berkovich, Spectral theory and analytic geometry over nonarchimedean fields, 33 (1990), AMS Mathematical Surveys and Monographs Zbl0715.14013MR1070709
- Y. Bilu, Limit distribution of small points on algebraic tori, Duke Math. J. 89 (1997), 465-476 Zbl0918.11035MR1470340
- E. Bombieri, Subvarieties of linear tori and the unit equation: a survey, Analytic Number Theory 247 (1996), 1-20, Cambridge Univ. Press, Cambridge Zbl0923.11097MR1694981
- G. Call, S. Goldstine, Canonical heights on projective space, Journal of Number Theory 63 (1997), 211-243 Zbl0895.14006MR1443758
- G. Call, J. Silverman, Canonical heights on varieties with morphisms, Compositio Math. 89 (1993), 163-205 Zbl0826.14015MR1255693
- A. Chambert-Loir, Equidistribution of small points in finite fibers Zbl1302.37065
- T. Chinburg, Capacity theory on varieties, Compositio Math. 80 (1991), 71-84 Zbl0761.11028MR1127060
- T. Chinburg, R. Rumely, The capacity pairing, J. Reine Angew. Math. 434 (1993), 1-44 Zbl0756.14013MR1195689
- L. DeMarco, Dynamics of rational maps: Lyapunov exponents, bifurcations, and metrics on the sphere, Mathematische Annalen 326 (2003), 43-73 Zbl1032.37029MR1981611
- G. Faltings, Calculus on arithmetic surfaces, Annals of Math. 119 (1984), 387-424 Zbl0559.14005MR740897
- C. Favre, M. Jonsson, The valuative tree, Lecture Notes in Mathematics 1853 (2004), Springer-Verlag, Berlin and New York Zbl1064.14024MR2097722
- C. Favre, J. Rivera-Letelier, Equidistribution des points de petite hauteur
- C. Favre, J. Rivera-Letelier, Théorème d’équidistribution de Brolin en dynamique -adique, C. R. Math. Acad. Sci. 339 (2004), 271-276 Zbl1052.37039MR2092012
- A. Freire, A. Lopes, R. Mañé, An invariant measure for rational maps, Bol. Soc. Brasil. Mat. 14 (1983), 45-62 Zbl0568.58027MR736568
- J. H. Hubbard, P. Papadapol, Superattractive fixed points in , Indiana Univ. Math. J. 43 (1994), 321-365 Zbl0858.32023MR1275463
- M. Klimek, Pluripotential Theory, 6 (1991), Oxford Science Publications Zbl0742.31001MR1150978
- S. Lang, Arakelov Theory, (1988), Springer–Verlag Zbl0667.14001MR969124
- M. Lyubich, Entropy properties of rational endomorphisms of the Riemann sphere, Ergodic Theory Dynamical Systems 3 (1983), 351-385 Zbl0537.58035MR741393
- V. Maillot, Géométrie d’Arakelov des variétés toriques et fibrés en droites intégrables, 80 (2000), Mémoires de la SMF, Paris Zbl0963.14009
- J. Milnor, Dynamics in One Complex Variable, (2000), Vieweg Zbl0972.30014MR1721240
- J. Pineiro, L. Szpiro, T. Tucker, Mahler measure for dynamical systems on and intersection theory on a singular arithmetic surface, Geometric methods in algebra and number theory 235 (2004), 219-250, Birkhaüser Zbl1101.11020MR2166086
- T. Ransford, Potential Theory in the Complex Plane, 28 (1995), London Math. Soc. Zbl0828.31001MR1334766
- J. Rivera-Letelier, Théorie de Fatou et Julia dans la droite projective de Berkovich
- J. Rivera-Letelier, Dynamique des fonctions rationelles sur les corps locaux, Astérisque 287 (2003), 147-230 Zbl1140.37336MR2040006
- H. L. Royden, Real Analysis, (1988), MacMillan Publishing Co., New York Zbl0704.26006MR1013117
- W. Rudin, Real and Complex Analysis, (1974), McGraw-Hill, New York Zbl0278.26001MR344043
- R. Rumely, Capacity Theory on Algebraic Curves, Lecture Notes in Mathematics 1378 (1989), Springer-Verlag, Berlin-Heidelberg-New York Zbl0679.14012MR1009368
- R. Rumely, An intersection theory for curves, with analytic contributions from nonarchimedean places, Canadian Mathematical Society Conference Proceedings 15 (1995), 325-357, AMS Zbl0859.11037MR1353942
- R. Rumely, On Bilu’s equidistribution theorem, Contemp. Math. 237 (1999), 159-166 Zbl1029.11030MR1710794
- R. Rumely, M. Baker, Analysis and dynamics on the Berkovich projective line Zbl1196.14002
- R. Rumely, C.F. Lau, Arithmetic capacities on , Math. Zeit. 215 (1994), 533-560 Zbl0794.31008MR1269489
- R. Rumely, C.F. Lau, R. Varley, Existence of the Sectional Capacity, 145 (2000), American Mathematical Society, Providence, R.I. Zbl0987.14018MR1677934
- J. Silverman, Advanced Topics in the Arithmetic of Elliptic Curves, (1994), Springer-Verlag, Berlin and New York Zbl0911.14015MR1312368
- L. Szpiro, E. Ullmo, S. Zhang, Équirépartition des petits points, Invent. Math. 127 (1997), 337-347 Zbl0991.11035MR1427622
- A. Thuillier, Théorie du potentiel sur les courbes en géométrie analytique non archimédienne. Applications à la théorie d’Arakelov, (2005)
- M. Tsuji, Potential Theory in Modern Function Theory, (1959), Maruzen, Tokyo Zbl0087.28401MR114894
- B. L. van der Waerden, Algebra, 1 (1970), New York Zbl0137.25403
- S. Zhang, Admissible pairing on a curve, Invent. Math. 112 (1993), 171-193 Zbl0795.14015MR1207481
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.