Asymptotiques en temps petit du noyau de la chaleur des métriques riemanniennes et sous-riemanniennes
Nous établissons l’asymptotique en temps petit du noyau de la chaleur au lieu de coupure dans les situations génériques, en géométrie riemannienne en dimension inférieure ou égale à 5, en géométrie sous-riemannienne de contact en dimension 3 ou de quasi-contact en dimension 4. La preuve nous permet de montrer qu’en dimension inférieure ou égale à 5 les seules singularités d’une application exponentielle riemannienne générique qui peuvent apparaître le long d’une géodésique minimisante sont et...