Description of all solutions of a linear complementarity problem.
For a real square matrix and an integer , let denote the matrix formed from by rounding off all its coefficients to decimal places. The main problem handled in this paper is the following: assuming that has some property, under what additional condition(s) can we be sure that the original matrix possesses the same property? Three properties are investigated: nonsingularity, positive definiteness, and positive invertibility. In all three cases it is shown that there exists a real number...
It is shown that if the concept of an interval solution to a system of linear interval equations given by Ratschek and Sauer is slightly modified, then only two nonlinear equations are to be solved to find a modified interval solution or to verify that no such solution exists.
The notion of productivity of activities is introduced, its characterization is given and three special types of return functions are examined.
New proofs of two previously published theorems relating nonsingularity of interval matrices to -matrices are given.
It is proved that checking positive definiteness, stability or nonsingularity of all [symmetric] matrices contained in a symmetric interval matrix is NP-hard.
We present a sufficient regularity condition for interval matrices which generalizes two previously known ones. It is formulated in terms of positive definiteness of a certain point matrix, and can also be used for checking positive definiteness of interval matrices. Comparing it with Beeck’s strong regularity condition, we show by counterexamples that none of the two conditions is more general than the other one.
Page 1