Currently displaying 1 – 2 of 2

Showing per page

Order by Relevance | Title | Year of publication

Compact hyperbolic tetrahedra with non-obtuse dihedral angles.

Roland K.W. Roeder — 2006

Publicacions Matemàtiques

Given a combinatorial description C of a polyhedron having E edges, the space of dihedral angles of all compact hyperbolic polyhedra that realize C is generally not a convex subset of RE. If C has five or more faces, Andreev's Theorem states that the corresponding space of dihedral angles AC obtained by restricting to non-obtuse angles is a convex polytope. In this paper we explain why Andreev did not consider tetrahedra, the only polyhedra having fewer than five faces, by demonstrating that the...

Andreev’s Theorem on hyperbolic polyhedra

Roland K.W. RoederJohn H. HubbardWilliam D. Dunbar — 2007

Annales de l’institut Fourier

In 1970, E.M.Andreev published a classification of all three-dimensional compact hyperbolic polyhedra (other than tetrahedra) having non-obtuse dihedral angles. Given a combinatorial description of a polyhedron,  C , Andreev’s Theorem provides five classes of linear inequalities, depending on  C , for the dihedral angles, which are necessary and sufficient conditions for the existence of a hyperbolic polyhedron realizing C with the assigned dihedral angles. Andreev’s Theorem also shows that the resulting...

Page 1

Download Results (CSV)