The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 13 of 13

Showing per page

Order by Relevance | Title | Year of publication

Equations in linear spaces

CONTENTSPreface...................... 5Acknowledgment...................... 7PART A. LINEAR OPERATORS IN LINEAR SPACESCHAPTER I. Operators with a finite and semifinite dimensional characteristic........ 25CHAPTER II. Algebraic and almost algebraic operators........ 65CHAPTER III. Φ_Ξ-operators........ 90CHAPTER IV. Determinant theory of Φ_Ξ-operators........ 102PART B. LINEAR OPERATORS IN LINEAR TOPOLOGICAL SPACESCHAPTER I. Linear topological and linear metric space........ 115CHAPTER II. Continuous...

How to define "convex functions" on differentiable manifolds

Stefan Rolewicz — 2009

Discussiones Mathematicae, Differential Inclusions, Control and Optimization

In the paper a class of families (M) of functions defined on differentiable manifolds M with the following properties: 1 . if M is a linear manifold, then (M) contains convex functions, 2 . (·) is invariant under diffeomorphisms, 3 . each f ∈ (M) is differentiable on a dense G δ -set, is investigated.

On a globalization property

Stefan Rolewicz — 1993

Applicationes Mathematicae

Let (X,τ) be a topological space. Let Φ be a class of real-valued functions defined on X. A function ϕ ∈ Φ is called a local Φ-subgradient of a function f:X → ℝ at a point x 0 if there is a neighbourhood U of x 0 such that f(x) - f( x 0 ) ≥ ϕ(x) - ϕ( x 0 ) for all x ∈ U. A function ϕ ∈ Φ is called a global Φ-subgradient of f at x 0 if the inequality holds for all x ∈ X. The following properties of the class Φ are investigated: (a) when the existence of a local Φ-subgradient of a function f at each point implies...

Page 1

Download Results (CSV)