In this paper we consider linear Hamiltonian differential systems without the
controllability (or normality) assumption. We prove the Rayleigh principle for these
systems with Dirichlet boundary conditions, which provides a variational characterization
of the finite eigenvalues of the associated self-adjoint eigenvalue problem. This result
generalizes the traditional Rayleigh principle to possibly abnormal linear Hamiltonian
systems. The main tools...
In this paper we consider a linear operator on an unbounded interval associated with a matrix linear Hamiltonian system. We characterize its Friedrichs extension in terms of the recessive system of solutions at infinity. This generalizes a similar result obtained by Marletta and Zettl for linear operators defined by even order Sturm-Liouville differential equations.
In this paper we consider linear Hamiltonian differential systems without the
controllability (or normality) assumption. We prove the Rayleigh principle for these
systems with Dirichlet boundary conditions, which provides a variational characterization
of the finite eigenvalues of the associated self-adjoint eigenvalue problem. This result
generalizes the traditional Rayleigh principle to possibly abnormal linear Hamiltonian
systems. The main tools...
Download Results (CSV)