Topological sequence entropy for maps of the circle
A continuous map of the interval is chaotic iff there is an increasing sequence of nonnegative integers such that the topological sequence entropy of relative to , , is positive ([FS]). On the other hand, for any increasing sequence of nonnegative integers there is a chaotic map of the interval such that ([H]). We prove that the same results hold for maps of the circle. We also prove some preliminary results concerning topological sequence entropy for maps of general compact metric...