The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 4 of 4

Showing per page

Order by Relevance | Title | Year of publication

Fractional cartesian products of sets

Ron C. Blei — 1979

Annales de l'institut Fourier

Let E be a subset of a discrete abelian group whose compact dual is G . E is exactly p -Sidon (respectively, exactly non- p -Sidon) when ( * ) C E ( G ) r holds if and only if r [ p , ] (respectively, r ( p , ) ). E is said to be exactly Λ β (respectively, exactly non- Λ β ) if E has the property ( * * ) every f L E 2 ( G ) satisfies G exp ( λ | f | 2 / α < , for all λ > 0 , if and only if α [ β , ) (respectively, α ( β , ) ). In this paper, for every p [ 1 , 2 ) and β [ 1 , ) , we display sets which are exactly p -Sidon, exactly non- p -Sidon, exactly Λ β and exactly non- Λ β .

Page 1

Download Results (CSV)