Necessary and sufficient conditions are given on the weights t, u, v, and w, in order for to hold when and are N-functions with convex, and T is the Hardy operator or a generalized Hardy operator. Weak-type characterizations are given for monotone operators and the connection between weak-type and strong-type inequalities is explored.
This paper continues our study of Sobolev-type imbedding inequalities involving rearrangement-invariant Banach function norms. In it we characterize when the norms considered are optimal. Explicit expressions are given for the optimal partners corresponding to a given domain or range norm.
We study imbeddings of the Sobolev space
: = u: Ω → ℝ with < ∞ when |α| ≤ m,
in which Ω is a bounded Lipschitz domain in ℝⁿ, ϱ is a rearrangement-invariant (r.i.) norm and 1 ≤ m ≤ n - 1. For such a space we have shown there exist r.i. norms, and , that are optimal with respect to the inclusions
.
General formulas for and are obtained using the -method of interpolation. These lead to explicit expressions when ϱ is a Lorentz Gamma norm or an Orlicz norm.
We find necessary and sufficient conditions on a pair of rearrangement-invariant norms, ϱ and σ, in order that the Sobolev space be compactly imbedded into the rearrangement-invariant space , where Ω is a bounded domain in ℝⁿ with Lipschitz boundary and 1 ≤ m ≤ n-1. In particular, we establish the equivalence of the compactness of the Sobolev imbedding with the compactness of a certain Hardy operator from into . The results are illustrated with examples in which ϱ and σ are both Orlicz norms...
The least concave majorant, , of a continuous function on a closed interval, , is defined by
We present an algorithm, in the spirit of the Jarvis March, to approximate the least concave majorant of a differentiable piecewise polynomial function of degree at most three on . Given any function , it can be well-approximated on by a clamped cubic spline . We show that is then a good approximation to . We give two examples, one to illustrate, the other to apply our algorithm.
Download Results (CSV)