Compactification of degenerate abelian schemes over a regular divisor. (Compactification de schémes Abéliens dégénérant au-dessus d'un diviseur régulier.)
Soit un modèle entier en un premier d’une variété de Shimura de type PEL, ayant bonne réduction associée à un groupe réductif . On peut associer aux -représentations du groupe deux types de faisceaux : des cristaux sur la fibre spéciale de , et des systèmes locaux pour la topologie étale sur la fibre générique. Nous établissons un théorème de comparaison entre la cohomologie de ces deux types de faisceaux.
We study the irreducible constituents of the reduction modulo of irreducible algebraic representations of the group for a finite extension of . We show that asymptotically, the multiplicity of each constituent depends only on the dimension of and the central character of its reduction modulo . As an application, we compute the asymptotic value of multiplicities that are the object of the Breuil-Mézard conjecture.
Page 1