Finite element solution of a hyperbolic-parabolic problem
Existence and finite element approximation of a hyperbolic-parabolic problem is studied. The original two-dimensional domain is approximated by a polygonal one (external approximations). The time discretization is obtained using Euler’s backward formula (Rothe’s method). Under certain smoothing assumptions on the data (see (2.6), (2.7)) the existence and uniqueness of the solution and the convergence of Rothe’s functions in the space is proved.