Finite element solution of a hyperbolic-parabolic problem
Applications of Mathematics (1994)
- Volume: 39, Issue: 3, page 215-239
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topHlavička, Rudolf. "Finite element solution of a hyperbolic-parabolic problem." Applications of Mathematics 39.3 (1994): 215-239. <http://eudml.org/doc/32880>.
@article{Hlavička1994,
abstract = {Existence and finite element approximation of a hyperbolic-parabolic problem is studied. The original two-dimensional domain is approximated by a polygonal one (external approximations). The time discretization is obtained using Euler’s backward formula (Rothe’s method). Under certain smoothing assumptions on the data (see (2.6), (2.7)) the existence and uniqueness of the solution and the convergence of Rothe’s functions in the space $C(\overline\{I\},V)$ is proved.},
author = {Hlavička, Rudolf},
journal = {Applications of Mathematics},
keywords = {Rothe's method; finite elements.; Euler’s backward formula; linear parabolic or hyperbolic equations; convergence; Euler's backward formula; linear parabolic or hyperbolic equations; Rothe method; finite element; convergence},
language = {eng},
number = {3},
pages = {215-239},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Finite element solution of a hyperbolic-parabolic problem},
url = {http://eudml.org/doc/32880},
volume = {39},
year = {1994},
}
TY - JOUR
AU - Hlavička, Rudolf
TI - Finite element solution of a hyperbolic-parabolic problem
JO - Applications of Mathematics
PY - 1994
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 39
IS - 3
SP - 215
EP - 239
AB - Existence and finite element approximation of a hyperbolic-parabolic problem is studied. The original two-dimensional domain is approximated by a polygonal one (external approximations). The time discretization is obtained using Euler’s backward formula (Rothe’s method). Under certain smoothing assumptions on the data (see (2.6), (2.7)) the existence and uniqueness of the solution and the convergence of Rothe’s functions in the space $C(\overline{I},V)$ is proved.
LA - eng
KW - Rothe's method; finite elements.; Euler’s backward formula; linear parabolic or hyperbolic equations; convergence; Euler's backward formula; linear parabolic or hyperbolic equations; Rothe method; finite element; convergence
UR - http://eudml.org/doc/32880
ER -
References
top- A new approach for determination of eddy current and flux penetration in nonlinear ferromagnetic materials, IEEE Trans. MAG-10 (1974), 682–685. (1974)
- Nichtlineare Operatorgleichungen und Operatordifferentialgleichungen, Akademie, Berlin, 1974. (1974) MR0636412
- Numerical analysis of transient field problems in electrical machines, Proc. IEE 123 (1976), 893–898. (1976)
- Method of Rothe in Evolution Equations, Teubner-Texte zur Mathematik, Band 80, Leipzig, 1985. (1985) MR0834176
- 10.1007/BF01575911, Archiv für Elektrotechnik 68 (1985), 223–228. (1985) DOI10.1007/BF01575911
- 10.1002/nme.1620190709, Internat. J. Numer. Methods Engineering 19 (1983), 1053–1062. (1983) DOI10.1002/nme.1620190709
- 10.1137/0710022, I. SIAM J. Numer. Anal. 10 (1973), 229–240. (1973) MR0395263DOI10.1137/0710022
- 10.1051/m2an/1982160201611, RAIRO Anal. Numér. 16 (1982), 161–191. (1982) MR0661454DOI10.1051/m2an/1982160201611
- 10.1007/BF01390058, Numer. Math. 55 (1989), 343–376. (1989) MR0993476DOI10.1007/BF01390058
- Nonlinear Elliptic and Evolution Problems and Their Finite Element Approximations, Academic Press, London, 1990. (1990) MR1086876
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.