The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 1 of 1

Showing per page

Order by Relevance | Title | Year of publication

Hausdorff dimension of the maximal run-length in dyadic expansion

Ruibiao Zou — 2011

Czechoslovak Mathematical Journal

For any x [ 0 , 1 ) , let x = [ ϵ 1 , ϵ 2 , , ] be its dyadic expansion. Call r n ( x ) : = max { j 1 : ϵ i + 1 = = ϵ i + j = 1 , 0 i n - j } the n -th maximal run-length function of x . P. Erdös and A. Rényi showed that lim n r n ( x ) / log 2 n = 1 almost surely. This paper is concentrated on the points violating the above law. The size of sets of points, whose run-length function assumes on other possible asymptotic behaviors than log 2 n , is quantified by their Hausdorff dimension.

Page 1

Download Results (CSV)