Hausdorff dimension of the maximal run-length in dyadic expansion
Czechoslovak Mathematical Journal (2011)
- Volume: 61, Issue: 4, page 881-888
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topZou, Ruibiao. "Hausdorff dimension of the maximal run-length in dyadic expansion." Czechoslovak Mathematical Journal 61.4 (2011): 881-888. <http://eudml.org/doc/196705>.
@article{Zou2011,
abstract = {For any $x\in [0,1)$, let $x=[\epsilon _1,\epsilon _2,\cdots ,]$ be its dyadic expansion. Call $r_n(x):=\max \lbrace j\ge 1\colon \epsilon _\{i+1\}=\cdots =\epsilon _\{i+j\}=1$, $0\le i\le n-j\rbrace $ the $n$-th maximal run-length function of $x$. P. Erdös and A. Rényi showed that $\lim _\{n\rightarrow \infty \}\{r_n(x)\}/\{\log _2 n\}=1$ almost surely. This paper is concentrated on the points violating the above law. The size of sets of points, whose run-length function assumes on other possible asymptotic behaviors than $\log _2 n$, is quantified by their Hausdorff dimension.},
author = {Zou, Ruibiao},
journal = {Czechoslovak Mathematical Journal},
keywords = {run-length function; Hausdorff dimension; dyadic expansion; run-length function; Hausdorff dimension; dyadic expansion},
language = {eng},
number = {4},
pages = {881-888},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Hausdorff dimension of the maximal run-length in dyadic expansion},
url = {http://eudml.org/doc/196705},
volume = {61},
year = {2011},
}
TY - JOUR
AU - Zou, Ruibiao
TI - Hausdorff dimension of the maximal run-length in dyadic expansion
JO - Czechoslovak Mathematical Journal
PY - 2011
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 61
IS - 4
SP - 881
EP - 888
AB - For any $x\in [0,1)$, let $x=[\epsilon _1,\epsilon _2,\cdots ,]$ be its dyadic expansion. Call $r_n(x):=\max \lbrace j\ge 1\colon \epsilon _{i+1}=\cdots =\epsilon _{i+j}=1$, $0\le i\le n-j\rbrace $ the $n$-th maximal run-length function of $x$. P. Erdös and A. Rényi showed that $\lim _{n\rightarrow \infty }{r_n(x)}/{\log _2 n}=1$ almost surely. This paper is concentrated on the points violating the above law. The size of sets of points, whose run-length function assumes on other possible asymptotic behaviors than $\log _2 n$, is quantified by their Hausdorff dimension.
LA - eng
KW - run-length function; Hausdorff dimension; dyadic expansion; run-length function; Hausdorff dimension; dyadic expansion
UR - http://eudml.org/doc/196705
ER -
References
top- Arratia, R., Gordon, L., Waterman, M. S., 10.1214/aos/1176347615, Ann. Stat. 18 (1990), 539-570. (1990) Zbl0712.92016MR1056326DOI10.1214/aos/1176347615
- Benjamini, I., Häggström, O., Peres, Y., Steif, J. E., 10.1214/aop/1046294302, Probab. 31 (2003), 1-34. (2003) MR1959784DOI10.1214/aop/1046294302
- Billingsley, P., Ergodic Theory and Information,, Wiley Series in Probability and Mathematical Statistics. New York: John Wiley and Sons (1965). (1965) Zbl0141.16702MR0192027
- Khoshnevisan, D., Levin, D. A., Méndez-Hernández, P. J., 10.1214/009117904000001044, Ann. Probab. 33 (2005), 1452-1478. (2005) MR2150195DOI10.1214/009117904000001044
- Khoshnevisan, D., Levin, D. A., Méndez-Hernández, P. J., 10.1007/s00440-005-0435-6, Probab. Theory Relat. Fields. 134 (2006), 383-416. (2006) MR2226886DOI10.1007/s00440-005-0435-6
- Khoshnevisan, D., Levin, D. A., On dynamical bit sequences, arXiv:0706.1520v2.
- Ma, J.-H., Wen, S.-Y., Wen, Z.-Y., 10.1007/s00605-007-0455-7, Monatsh. Math. 151 (2007), 287-292. (2007) Zbl1170.28001MR2329089DOI10.1007/s00605-007-0455-7
- Révész, P., Random Walk in Random and Non-Random Enviroments, Singapore. World Scientific (1990). (1990) MR1082348
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.