Hausdorff dimension of the maximal run-length in dyadic expansion

Ruibiao Zou

Czechoslovak Mathematical Journal (2011)

  • Volume: 61, Issue: 4, page 881-888
  • ISSN: 0011-4642

Abstract

top
For any x [ 0 , 1 ) , let x = [ ϵ 1 , ϵ 2 , , ] be its dyadic expansion. Call r n ( x ) : = max { j 1 : ϵ i + 1 = = ϵ i + j = 1 , 0 i n - j } the n -th maximal run-length function of x . P. Erdös and A. Rényi showed that lim n r n ( x ) / log 2 n = 1 almost surely. This paper is concentrated on the points violating the above law. The size of sets of points, whose run-length function assumes on other possible asymptotic behaviors than log 2 n , is quantified by their Hausdorff dimension.

How to cite

top

Zou, Ruibiao. "Hausdorff dimension of the maximal run-length in dyadic expansion." Czechoslovak Mathematical Journal 61.4 (2011): 881-888. <http://eudml.org/doc/196705>.

@article{Zou2011,
abstract = {For any $x\in [0,1)$, let $x=[\epsilon _1,\epsilon _2,\cdots ,]$ be its dyadic expansion. Call $r_n(x):=\max \lbrace j\ge 1\colon \epsilon _\{i+1\}=\cdots =\epsilon _\{i+j\}=1$, $0\le i\le n-j\rbrace $ the $n$-th maximal run-length function of $x$. P. Erdös and A. Rényi showed that $\lim _\{n\rightarrow \infty \}\{r_n(x)\}/\{\log _2 n\}=1$ almost surely. This paper is concentrated on the points violating the above law. The size of sets of points, whose run-length function assumes on other possible asymptotic behaviors than $\log _2 n$, is quantified by their Hausdorff dimension.},
author = {Zou, Ruibiao},
journal = {Czechoslovak Mathematical Journal},
keywords = {run-length function; Hausdorff dimension; dyadic expansion; run-length function; Hausdorff dimension; dyadic expansion},
language = {eng},
number = {4},
pages = {881-888},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Hausdorff dimension of the maximal run-length in dyadic expansion},
url = {http://eudml.org/doc/196705},
volume = {61},
year = {2011},
}

TY - JOUR
AU - Zou, Ruibiao
TI - Hausdorff dimension of the maximal run-length in dyadic expansion
JO - Czechoslovak Mathematical Journal
PY - 2011
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 61
IS - 4
SP - 881
EP - 888
AB - For any $x\in [0,1)$, let $x=[\epsilon _1,\epsilon _2,\cdots ,]$ be its dyadic expansion. Call $r_n(x):=\max \lbrace j\ge 1\colon \epsilon _{i+1}=\cdots =\epsilon _{i+j}=1$, $0\le i\le n-j\rbrace $ the $n$-th maximal run-length function of $x$. P. Erdös and A. Rényi showed that $\lim _{n\rightarrow \infty }{r_n(x)}/{\log _2 n}=1$ almost surely. This paper is concentrated on the points violating the above law. The size of sets of points, whose run-length function assumes on other possible asymptotic behaviors than $\log _2 n$, is quantified by their Hausdorff dimension.
LA - eng
KW - run-length function; Hausdorff dimension; dyadic expansion; run-length function; Hausdorff dimension; dyadic expansion
UR - http://eudml.org/doc/196705
ER -

References

top
  1. Arratia, R., Gordon, L., Waterman, M. S., 10.1214/aos/1176347615, Ann. Stat. 18 (1990), 539-570. (1990) Zbl0712.92016MR1056326DOI10.1214/aos/1176347615
  2. Benjamini, I., Häggström, O., Peres, Y., Steif, J. E., 10.1214/aop/1046294302, Probab. 31 (2003), 1-34. (2003) MR1959784DOI10.1214/aop/1046294302
  3. Billingsley, P., Ergodic Theory and Information,, Wiley Series in Probability and Mathematical Statistics. New York: John Wiley and Sons (1965). (1965) Zbl0141.16702MR0192027
  4. Khoshnevisan, D., Levin, D. A., Méndez-Hernández, P. J., 10.1214/009117904000001044, Ann. Probab. 33 (2005), 1452-1478. (2005) MR2150195DOI10.1214/009117904000001044
  5. Khoshnevisan, D., Levin, D. A., Méndez-Hernández, P. J., 10.1007/s00440-005-0435-6, Probab. Theory Relat. Fields. 134 (2006), 383-416. (2006) MR2226886DOI10.1007/s00440-005-0435-6
  6. Khoshnevisan, D., Levin, D. A., On dynamical bit sequences, arXiv:0706.1520v2. 
  7. Ma, J.-H., Wen, S.-Y., Wen, Z.-Y., 10.1007/s00605-007-0455-7, Monatsh. Math. 151 (2007), 287-292. (2007) Zbl1170.28001MR2329089DOI10.1007/s00605-007-0455-7
  8. Révész, P., Random Walk in Random and Non-Random Enviroments, Singapore. World Scientific (1990). (1990) MR1082348

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.