Let be a positive odd integer. In this paper, combining some properties of quadratic and quartic diophantine equations with elementary analysis, we prove that if and both and are odd primes, then the general elliptic curve has only the integral point . By this result we can get that the above elliptic curve has only the trivial integral point for etc. Thus it can be seen that the elliptic curve really is an unusual elliptic curve which has large integral points.
Let be a fixed odd prime. We combine some properties of quadratic and quartic Diophantine equations with elementary number theory methods to determine all integral points on the elliptic curve . Further, let denote the number of pairs of integral points on with . We prove that if , then or depending on whether or .
The power graph of a finite group is the graph whose vertex set is the group, two distinct elements being adjacent if one is a power of the other. The enhanced power graph of a finite group is the graph whose vertex set consists of all elements of the group, in which two vertices are adjacent if they generate a cyclic subgroup. In this paper, we give a complete description of finite groups with enhanced power graphs admitting a perfect code. In addition, we describe all groups in the following two...
Download Results (CSV)