Long range rotators
Messager, A.; Miracle-Sole, S.; Picco, P.; Ruiz, J. — 1984
Proceedings of the 11th Winter School on Abstract Analysis
We obtain an algebraic interpretation by means of the Picard-Vessiot theory of a result by Ziglin about the self-intersection of complex separatrices of time-periodically perturbed one-degree of freedom complex analytical Hamiltonian systems.
We introduce a quantitative measure Δ of stability in optimal sequential testing of two simple hypotheses about a density of observations: f=f₀ versus f=f₁. The index Δ represents an additional cost paid when a stopping rule optimal for the pair (f₀,f₁) is applied to test the hypothesis f=f₀ versus a "perturbed alternative" f=f̃₁. An upper bound for Δ is established in terms of the total variation distance between f₁(X)/f₀(X) and f̃₁(X)/f₀(X) with X∼f₀.
We consider the following version of the standard problem of empirical estimates in stochastic optimization. We assume that the underlying random vectors are independent and not necessarily identically distributed but that they satisfy a "slow variation" condition in the sense of the definition given in this paper. We show that these assumptions along with the usual restrictions (boundedness and equicontinuity) on a class of functions allow one to use the empirical mean method to obtain a consistent...
We introduce a class of weights for a which a rich theory of real interpolation can be developed. In particular it led us to extend the commutator theorems associated to this method.
One can find in the mathematical literature many recent papers studying the generalized Apostol-Bernoulli, Apostol-Euler and Apostol-Genocchi polynomials, defined by means of generating functions. In this article we clarify the range of parameters in which these definitions are valid and when they provide essentially different families of polynomials. In particular, we show that, up to multiplicative constants, it is enough to take as the “main family” those given by and as an “exceptional family”...
Let w be a generalized Jacobi weight on the interval [-1,1] and, for each function f, let Sf denote the n-th partial sum of the Fourier series of f in the orthogonal polynomials associated to w. We prove a result about uniform boundedness of the operators S in some weighted L spaces. The study of the norms of the kernels K related to the operators S allows us to obtain a relation between the Fourier series with respect to different generalized Jacobi weights.
We give a generalization of poly-Cauchy polynomials and investigate their arithmetical and combinatorial properties. We also study the zeta functions which interpolate the generalized poly-Cauchy polynomials.
Page 1