Integrability of hamiltonian systems and differential Galois groups of higher variational equations
Juan J. Morales-Ruiz; Jean-Pierre Ramis; Carles Simó
Annales scientifiques de l'École Normale Supérieure (2007)
- Volume: 40, Issue: 6, page 845-884
- ISSN: 0012-9593
Access Full Article
topHow to cite
topMorales-Ruiz, Juan J., Ramis, Jean-Pierre, and Simó, Carles. "Integrability of hamiltonian systems and differential Galois groups of higher variational equations." Annales scientifiques de l'École Normale Supérieure 40.6 (2007): 845-884. <http://eudml.org/doc/82728>.
@article{Morales2007,
author = {Morales-Ruiz, Juan J., Ramis, Jean-Pierre, Simó, Carles},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {differential Galois group; higher variational equation; Hamiltonian system; dynamical systems in the complex domain},
language = {eng},
number = {6},
pages = {845-884},
publisher = {Elsevier},
title = {Integrability of hamiltonian systems and differential Galois groups of higher variational equations},
url = {http://eudml.org/doc/82728},
volume = {40},
year = {2007},
}
TY - JOUR
AU - Morales-Ruiz, Juan J.
AU - Ramis, Jean-Pierre
AU - Simó, Carles
TI - Integrability of hamiltonian systems and differential Galois groups of higher variational equations
JO - Annales scientifiques de l'École Normale Supérieure
PY - 2007
PB - Elsevier
VL - 40
IS - 6
SP - 845
EP - 884
LA - eng
KW - differential Galois group; higher variational equation; Hamiltonian system; dynamical systems in the complex domain
UR - http://eudml.org/doc/82728
ER -
References
top- [1] Abraham R., Marsden J.E., Foundations of Mechanics, second ed., Benjamin, 1978. Zbl0393.70001MR515141
- [2] Adler M., van Moerbeke P., Vanhaecke P., Algebraic Integrability, Painlevé Geometry and Lie Algebras, Springer, Berlin, 2004. Zbl1083.37001MR2095251
- [3] Almeida A., López-Castillo A., Stuchi T., Non-integrability proof of the frozen planetary atom configuration, J. Phys. A: Math. Gen.36 (2003) 4805-4814. Zbl1056.70006MR1984009
- [4] Almeida A., Stuchi T.J., The integrability of the anisotropic Stormer problem, Physica D189 (2004) 219-233. Zbl1098.70513MR2065518
- [5] Arribas M., Elipe A., Non Integrability of the motion of a particle around a massive straight segment, Phys. Lett. A281 (2001) 142-148. Zbl1009.70017MR1822631
- [6] Arribas M., Elipe A., Riaguas A., Non-integrability of anisotropic quasi-homogeneous Hamiltonian systems, Mech. Res. Commun.30 (2003) 209-216. Zbl1038.70012MR1965203
- [7] Artin M., On the solutions of analytic equations, Invent. Math.5 (1968) 277-291. Zbl0172.05301MR232018
- [8] Atiyah M.F., MacDonald I.G., Introduction to Commutative Algebra, Addison–Wesley, London, 1969. Zbl0175.03601
- [9] Audin M., Intégrabilité et non-intégrabilité de systèmes hamiltoniens (d'après S. Ziglin, J. Morales-Ruiz, J.-P. Ramis, …), Sém. Bourbaki (2000/01), Exp. no 884, Astérisque282 (2002) 113-135. Zbl1050.37028MR1975177
- [10] Audin M., Les systèmes hamiltoniens et leur intégrabilité, Cours Spécialisés, Collection SMF, vol. 8, Société Mathématique de France, Marseille, 2001. Zbl1144.37001MR1972063
- [11] Audin M., Integrability of Hamiltonian systems, Bulletin E.M.S. (December 2003) 9-12.
- [12] Audin M., Exemples de hamiltoniens non intégrables en mécanique analytique réelle, Ann. Fac. Sci. Toulouse Math.12 (2003) 1-23. Zbl1042.37039MR2124073
- [13] Audin M., La réduction symplectique appliquée à la non-intégrabilité du problème du satellite, Ann. Fac. Sci. Toulouse Math.12 (2003) 25-46. Zbl1042.37040MR2124074
- [14] Boucher D., Sur la non-intégrabilité du problème plan des trois corps de masses égales à un le long de la solution de Lagrange, C. R. Acad. Sci. Paris, Série I331 (2000) 391-394. Zbl0980.70008MR1784920
- [15] Boucher D., Sur les équations différentielles linéaires paramétrées, une application aux systèmes hamiltoniens, Thèse Univ. de Limoges, octobre 2000.
- [16] Boucher D., Non complete integrability of a satellite in circular orbit, Portugaliae Mathematica (N.S.)63 (2006) 69-89. Zbl1089.70012MR2211962
- [17] Boucher D., Weil J.-A., Application of the J.-J. Morales and J.-P. Ramis theorem to test the non-complete integrability of the planar three-body problem, in: Fauvet F., Mitschi C. (Eds.), From Combinatorics to Dynamical Systems. Journées de calcul formel en l'honneur de Jean Thomann, March 22–23, 2002, IRMA Lectures in Mathematics and Theoretical Physics, vol. 3, IRMA, Strasbourg, 2003. Zbl1039.37034
- [18] Bourbaki N., Algèbre commutative, chapitres 1 à 4, Springer-Verlag, 2006. MR2284892
- [19] Bryant R.L., Chern S.S., Gardner R.B., Goldschmidt H.L., Griffiths P.A., Exterior Differential Systems, Springer-Verlag, Berlin, 1991. Zbl0726.58002MR1083148
- [20] Casale G., Sur le groupoïde de Galois d'un feuilletage, Thèse, Toulouse 2004.
- [21] Churchill R.C., Galoisian Obstructions to the Integrability of Hamiltonian Systems, The Kolchin Seminar in Differential Algebra, City College of New York, May, 1998.
- [22] Churchill R.C., Differential algebraic techniques in Hamiltonian mechanics, in: Guo L., Keigher W.F., Cassidy P.J., Sit W.Y. (Eds.), Differential Algebra and Related Topics, World Scientific Publ., 2002, pp. 219-255. Zbl1141.70309MR1921701
- [23] Deligne P., Catégories tannakiennes, in: Grothendieck festschrift, vol. 2, Progress in Mathematics, vol. 87, Birkhäuser, 1990, pp. 111-196. Zbl0727.14010MR1106898
- [24] Doubrovine B., Novikov S., Fomenko A., Géométrie Contemporaine, Méthodes et Applications, Deuxième partie, Géométrie et Topologie des Variétés, Éditions MIR, Moscou, 1979, (French translation 1982). Zbl0502.53003MR728386
- [25] Drach J., Essai sur une théorie générale de l'intégration et sur la classification des transcendantes, Ann. Sci. École Normale Sup., Sér. 315 (1898) 243-384. Zbl29.0244.02MR1508959JFM29.0349.06
- [26] Drach J., Sur le problème logique de l'intégration des équations différentielles, Ann. Fac. Sci. Univ. Toulouse, Sér. 210 (1908) 393-472. Zbl41.0416.03MR1508305JFM41.0416.03
- [27] Ferrer S., Mondéjar F., On the non-integrability of the Zeemann–Stark Hamiltonian system, Comm. Math. Phys.208 (1999) 55-63. Zbl0988.37072
- [28] Ferrer S., Mondéjar F., Non-integrability of the 3-D Hydrogen atom under motional Stark effect or circularly polarized microwave combined with magnetic fields, Phys. Lett. A264 (1999) 74-83.
- [29] Ferrer S., Mondéjar F., On the non-integrability of the generalized van der Waals Hamiltonian, J. Math. Phys.41 (2000) 5445-5452. Zbl0997.37031MR1770965
- [30] Fontich E., Simó C., Invariant manifolds for near identity differentiable maps and splitting of separatrices, Erg. Th. & Dyn. Systems10 (1990) 319-346. Zbl0706.58060MR1062761
- [31] Fontich E., Simó C., The splitting of separatrices for analytic diffeomorphisms, Erg. Th. & Dyn. Systems10 (1990) 295-318. Zbl0706.58061MR1062760
- [32] Grothendieck A., Techniques de construction en géométrie analytique VII, Séminaire Henri Cartan, 13-ème année 1960/61, vol. 14, W.A. Benjamin, 1967.
- [33] Hénon M., Heiles C., The applicability of the third integral of motion: Some numerical experiments, Astronom. J.69 (1964) 73-79. MR158746
- [34] Irigoyen M., Simó C., Non-integrability of the problem, Celest. Mech.55 (1993) 281-287. Zbl0767.70015
- [35] Ito H., Non-integrability of the Hénon–Heiles system and a theorem of Ziglin, Koday Math. J.8 (1985) 129-138. Zbl0577.58016
- [36] Ito H., On the holonomy group associated with analytic continuations of solutions for integrable systems, Boletim da Soc. Brasil. de Matemática21 (1990) 95-120. Zbl0762.58015MR1139560
- [37] Juillard Tosel E., Non-integrabilité algébrique et méromorphe de problèmes de N corps, Thèse Univ. Paris VI, janvier 1999.
- [38] Juillard Tosel E., Meromorphic parametric non-integrability; the inverse square potential, Arch. Rat. Mech. Anal.152 (2000) 187-207. Zbl0963.70010MR1764944
- [39] Kolar I., Michor P., Slovak J., Natural Operations in Differential Geometry, Springer-Verlag, 1991. Zbl0782.53013MR1202431
- [40] Levine H.I., Singularities of differentiable mappings, in: Proceedings of Liverpool Singularities Symposium I, Lecture Notes in Math., vol. 192, 1971. Zbl0216.45803
- [41] Llibre J., Simó C., Homoclinic phenomena in the three-body problem, J. Differential Equations37 (1980) 444-465. Zbl0445.70005MR590002
- [42] Llibre J., Simó C., Oscillatory solutions in the planar restricted three-body problem, Math. Ann.248 (1980) 153-184. Zbl0505.70010MR573346
- [43] Llibre J., Martínez R., Simó C., Transversality of the invariant manifolds associated to the Lyapunov family of periodic orbits near in the Restricted Three Body Problem, J. Differential Equations58 (1985) 104-156. Zbl0594.70013MR791842
- [44] Maciejewski A.J., Non-integrability of certain Hamiltonian systems, applications of the Morales–Ramis differential Galois extension of Ziglin theory, Banach Center Publications58 (2002) 139-150. Zbl1033.37028
- [45] Maciejewski A.J., Przybylska M., Non-integrability of restricted two-body problems in constant curvature spaces, Regul. Chaotic Dyn.8 (4) (2003) 413-430. Zbl1048.37052MR2023045
- [46] Maciejewski A.J., Przybylska M., Non-integrability of the problem of a rigid satellite in gravitational and magnetic fields, Celest. Mech. Dynam. Astron.87 (2003) 317-351. Zbl1106.70330MR2027746
- [47] Maciejewski A.J., Przybylska M., Non-integrability of the Suslov problem, J. Math. Phys.45 (2004) 1065-1078. Zbl1070.70003
- [48] Maciejewski A.J., Przybylska M., Non-integrability of the generalised two fixed centres problem, Celest. Mech. Dynam. Astron.89 (2004) 145-164. Zbl1132.70006MR2086188
- [49] Maciejewski A.J., Przybylska M., All meromorphically integrable 2D Hamiltonian systems with homogeneous potential of degree 3, Phys. Lett. A327 (2004) 461-473. Zbl1138.37325MR2086138
- [50] Maciejewski A.J., Przybylska M., Differential Galois approach to the non-integrability of the heavy top problem, Ann. Fac. Sci. Toulouse Sér. 614 (2005) 123-160. Zbl1089.70002MR2118036
- [51] Maciejewski A.J., Przybylska M., Stachowiak T., Non integrability of Gross–Neveu systems, Physica D201 (2005) 249-267. Zbl1088.37028
- [52] Maciejewski A.J., Przybylska M., Weil J.-A., Non-integrability of the generalized spring-pendulum problem, J. Phys. A: Math. Gen.37 (2004) 2579-2597. Zbl1076.70010MR2047228
- [53] Maciejewski A.J., Strelcyn J.M., Szydlowski M., Non-integrability of Bianchi VIII Hamiltonian system, J. Math. Phys.42 (2001) 1728-1743. Zbl1005.37057MR1820428
- [54] Maciejewski A.J., Szydlowski M., Towards a description of complexity of the simplest cosmological systems, J. Phys. A: Math. Gen.33 (2000) 9241-9254. Zbl0970.83011MR1804891
- [55] Maciejewski A.J., Szydlowski M., Integrability and non-integrability of planar Hamiltonian systems of cosmological origin, J. Nonlinear Math. Phys.8 (2001) 200-206. Zbl0979.83044MR1821531
- [56] Malgrange B., Le groupoïde de Galois d'un feuilletage, L'enseignement mathématique38 (2) (2001) 465-501. Zbl1033.32020MR1929336
- [57] Malgrange B., On the non linear Galois theory, Chinese Ann. Math. Ser. B23 (2) (2002) 219-226. Zbl1009.12005
- [58] Martinet J., Singularités des fonctions et applications différentiables, Pontificia Universidade Católica do Rio de Janeiro (PUC), 1974. Zbl0389.58005MR464292
- [59] Morales-Ruiz J.J., Differential Galois Theory and Non-Integrability of Hamiltonian Systems, Progress in Mathematics, vol. 179, Birkhäuser, 1999. Zbl0934.12003MR1713573
- [60] Morales-Ruiz J.J., Kovalevskaya, Liapounov, Painlevé, Ziglin and the differential Galois theory, Regular Chaotic Dynam.5 (2000) 251-272. Zbl0984.34075MR1789476
- [61] Morales-Ruiz J.J., Peris J.M., On a Galoisian approach to the splitting of separatrices, Ann. Fac. Sci. Toulouse Math.8 (1999) 125-141. Zbl0971.34076MR1721562
- [62] Morales-Ruiz J.J., Ramis J.P., Galoisian obstructions to integrability of Hamiltonian systems, Methods Appl. Anal.8 (2001) 33-96. Zbl1140.37352MR1867495
- [63] Morales-Ruiz J.J., Ramis J.P., Galoisian obstructions to integrability of Hamiltonian systems II, Methods Appl. Anal.8 (2001) 97-112. Zbl1140.37354
- [64] Morales-Ruiz J.J., Ramis J.P., A note on the non-integrability of some Hamiltonian systems with a homogeneous potential, Methods Appl. Anal.8 (2001) 113-120. Zbl1140.37353MR1867496
- [65] Morales-Ruiz J.J., Simó C., Non-integrability criteria for Hamiltonians in the case of Lamé normal variational equations, J. Differential Equations129 (1996) 111-135. Zbl0866.58034MR1400798
- [66] Morales-Ruiz J.J., Simó C., Simon S., Algebraic proof of the non-integrability of Hill's problem, Ergod. Th. & Dynam. Sys.25 (2005) 1237-1256. Zbl1078.70014MR2158404
- [67] Moser J., Stable and Random Motions in Dynamical Systems, Annals of Mathematics Studies, Princeton Univ. Press, 1973. Zbl0271.70009MR442980
- [68] Nakagawa K., Direct construction of polynomial first integrals for Hamiltonian systems with a two-dimensional homogeneous polynomial potential, Dep. of Astronomical Science, The Graduate University for Advanced Study and the National Astronomical Observatory of Japan, Ph.D. Thesis, 2002.
- [69] Nakagawa K., Yoshida H., A necessary condition for the integrability of homogeneous Hamiltonian systems with two degrees of freedom, J. Phys. A: Math. Gen.34 (2001) 2137-2148. Zbl1054.37037MR1831282
- [70] Neishtadt A.I., The separation of motions in systems with rapidly rotating phase, Prikladnaja Matematika i Mekhanika48 (1984) 133-139. Zbl0571.70022MR802878
- [71] Poincaré H., Les Méthodes Nouvelles de la Mécanique Céleste, vol. I, Gauthiers–Villars, Paris, 1892. Zbl0651.70002
- [72] Saenz A.W., Nonintegrability of the Dragt–Finn model of magnetic confinement: A Galoisian-group approach, Physica D144 (2000) 37-43. Zbl0958.37029
- [73] Serre J-P., Géométrie algébrique et géométrie analytique, Ann. Inst. Fourier Grenoble (1956) 1-42. Zbl0075.30401MR82175
- [74] Serre J-P., Espaces fibrés algébriques, in: Séminaire Claude Chavalley, 1958, tome 3, exp. no 1, pp. 1–37.
- [75] Simó C., Analytical and numerical computation of invariant manifolds, in: Benest D., Froeschlé C. (Eds.), Modern Methods in Celestial Mechanics, Editions Frontières, 1990, pp. 285-330, Also available at, http://www.maia.ub.es/dsg/.
- [76] Simó C., Measuring the lack of integrability in the problem, in: Roy A.E. (Ed.), Predictability, Stability and Chaos in the N-Body Dynamical Systems, Plenum Press, 1991, pp. 305-309. MR1210981
- [77] Terng C.L., Natural vector bundles and natural differential operators, Amer. J. Math.100 (1978) 775-828. Zbl0422.58001MR509074
- [78] Tsygvintsev A., Sur l'absence d'une intégrale première méromorphe supplémentaire dans le problème plan des trois corps, C. R. Acad. Sci. Paris Série I333 (2001) 241-244. Zbl0964.70011MR1847358
- [79] Umemura H., Differential Galois theory of infinite dimension, Nagoya Math. J.144 (1996) 59-135. Zbl0878.12002MR1425592
- [80] van der Put M., Singer M., Galois Theory of Linear Differential Equations, Springer, Berlin, 2003. Zbl1036.12008MR1960772
- [81] Vigo-Aguilar M.I., No integrabilidad del problema del satélite, Ph.D. Thesis, Departamento de Análisis Matemático y Matemática Aplicada, Universidad de Alicante, 1999.
- [82] Yagasaki K., Galoisian obstructions to integrability and Melnikov criteria for chaos in two-degree-of-freedom Hamiltonian systems with saddle-centers, Nonlinearity16 (2003) 2003-2013. Zbl1070.37038MR2012852
- [83] Yagasaki K., Non-integrability of an infinity-degree-of-freedom model for unforced and undamped straight beams, J. Appl. Mech.70 (2003) 732-738. Zbl1110.74769MR2011650
- [84] Yoshida H., A new necessary condition for the integrability of Hamiltonian systems with a two dimensional homogeneous potential, Physica D128 (1999) 53-69. Zbl0945.37015MR1685248
- [85] Yoshida H., Justification of Painlevé Analysis for Hamiltonian systems by differential Galois theory, Physica A228 (2000) 424-430. MR1808183
- [86] Ziglin S.L., Branching of solutions and non-existence of first integrals in Hamiltonian mechanics I, Funct. Anal. Appl.16 (1982) 181-189. Zbl0524.58015
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.