Integrability of hamiltonian systems and differential Galois groups of higher variational equations

Juan J. Morales-Ruiz; Jean-Pierre Ramis; Carles Simó

Annales scientifiques de l'École Normale Supérieure (2007)

  • Volume: 40, Issue: 6, page 845-884
  • ISSN: 0012-9593

How to cite

top

Morales-Ruiz, Juan J., Ramis, Jean-Pierre, and Simó, Carles. "Integrability of hamiltonian systems and differential Galois groups of higher variational equations." Annales scientifiques de l'École Normale Supérieure 40.6 (2007): 845-884. <http://eudml.org/doc/82728>.

@article{Morales2007,
author = {Morales-Ruiz, Juan J., Ramis, Jean-Pierre, Simó, Carles},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {differential Galois group; higher variational equation; Hamiltonian system; dynamical systems in the complex domain},
language = {eng},
number = {6},
pages = {845-884},
publisher = {Elsevier},
title = {Integrability of hamiltonian systems and differential Galois groups of higher variational equations},
url = {http://eudml.org/doc/82728},
volume = {40},
year = {2007},
}

TY - JOUR
AU - Morales-Ruiz, Juan J.
AU - Ramis, Jean-Pierre
AU - Simó, Carles
TI - Integrability of hamiltonian systems and differential Galois groups of higher variational equations
JO - Annales scientifiques de l'École Normale Supérieure
PY - 2007
PB - Elsevier
VL - 40
IS - 6
SP - 845
EP - 884
LA - eng
KW - differential Galois group; higher variational equation; Hamiltonian system; dynamical systems in the complex domain
UR - http://eudml.org/doc/82728
ER -

References

top
  1. [1] Abraham R., Marsden J.E., Foundations of Mechanics, second ed., Benjamin, 1978. Zbl0393.70001MR515141
  2. [2] Adler M., van Moerbeke P., Vanhaecke P., Algebraic Integrability, Painlevé Geometry and Lie Algebras, Springer, Berlin, 2004. Zbl1083.37001MR2095251
  3. [3] Almeida A., López-Castillo A., Stuchi T., Non-integrability proof of the frozen planetary atom configuration, J. Phys. A: Math. Gen.36 (2003) 4805-4814. Zbl1056.70006MR1984009
  4. [4] Almeida A., Stuchi T.J., The integrability of the anisotropic Stormer problem, Physica D189 (2004) 219-233. Zbl1098.70513MR2065518
  5. [5] Arribas M., Elipe A., Non Integrability of the motion of a particle around a massive straight segment, Phys. Lett. A281 (2001) 142-148. Zbl1009.70017MR1822631
  6. [6] Arribas M., Elipe A., Riaguas A., Non-integrability of anisotropic quasi-homogeneous Hamiltonian systems, Mech. Res. Commun.30 (2003) 209-216. Zbl1038.70012MR1965203
  7. [7] Artin M., On the solutions of analytic equations, Invent. Math.5 (1968) 277-291. Zbl0172.05301MR232018
  8. [8] Atiyah M.F., MacDonald I.G., Introduction to Commutative Algebra, Addison–Wesley, London, 1969. Zbl0175.03601
  9. [9] Audin M., Intégrabilité et non-intégrabilité de systèmes hamiltoniens (d'après S. Ziglin, J. Morales-Ruiz, J.-P. Ramis, …), Sém. Bourbaki (2000/01), Exp. no 884, Astérisque282 (2002) 113-135. Zbl1050.37028MR1975177
  10. [10] Audin M., Les systèmes hamiltoniens et leur intégrabilité, Cours Spécialisés, Collection SMF, vol. 8, Société Mathématique de France, Marseille, 2001. Zbl1144.37001MR1972063
  11. [11] Audin M., Integrability of Hamiltonian systems, Bulletin E.M.S. (December 2003) 9-12. 
  12. [12] Audin M., Exemples de hamiltoniens non intégrables en mécanique analytique réelle, Ann. Fac. Sci. Toulouse Math.12 (2003) 1-23. Zbl1042.37039MR2124073
  13. [13] Audin M., La réduction symplectique appliquée à la non-intégrabilité du problème du satellite, Ann. Fac. Sci. Toulouse Math.12 (2003) 25-46. Zbl1042.37040MR2124074
  14. [14] Boucher D., Sur la non-intégrabilité du problème plan des trois corps de masses égales à un le long de la solution de Lagrange, C. R. Acad. Sci. Paris, Série I331 (2000) 391-394. Zbl0980.70008MR1784920
  15. [15] Boucher D., Sur les équations différentielles linéaires paramétrées, une application aux systèmes hamiltoniens, Thèse Univ. de Limoges, octobre 2000. 
  16. [16] Boucher D., Non complete integrability of a satellite in circular orbit, Portugaliae Mathematica (N.S.)63 (2006) 69-89. Zbl1089.70012MR2211962
  17. [17] Boucher D., Weil J.-A., Application of the J.-J. Morales and J.-P. Ramis theorem to test the non-complete integrability of the planar three-body problem, in: Fauvet F., Mitschi C. (Eds.), From Combinatorics to Dynamical Systems. Journées de calcul formel en l'honneur de Jean Thomann, March 22–23, 2002, IRMA Lectures in Mathematics and Theoretical Physics, vol. 3, IRMA, Strasbourg, 2003. Zbl1039.37034
  18. [18] Bourbaki N., Algèbre commutative, chapitres 1 à 4, Springer-Verlag, 2006. MR2284892
  19. [19] Bryant R.L., Chern S.S., Gardner R.B., Goldschmidt H.L., Griffiths P.A., Exterior Differential Systems, Springer-Verlag, Berlin, 1991. Zbl0726.58002MR1083148
  20. [20] Casale G., Sur le groupoïde de Galois d'un feuilletage, Thèse, Toulouse 2004. 
  21. [21] Churchill R.C., Galoisian Obstructions to the Integrability of Hamiltonian Systems, The Kolchin Seminar in Differential Algebra, City College of New York, May, 1998. 
  22. [22] Churchill R.C., Differential algebraic techniques in Hamiltonian mechanics, in: Guo L., Keigher W.F., Cassidy P.J., Sit W.Y. (Eds.), Differential Algebra and Related Topics, World Scientific Publ., 2002, pp. 219-255. Zbl1141.70309MR1921701
  23. [23] Deligne P., Catégories tannakiennes, in: Grothendieck festschrift, vol. 2, Progress in Mathematics, vol. 87, Birkhäuser, 1990, pp. 111-196. Zbl0727.14010MR1106898
  24. [24] Doubrovine B., Novikov S., Fomenko A., Géométrie Contemporaine, Méthodes et Applications, Deuxième partie, Géométrie et Topologie des Variétés, Éditions MIR, Moscou, 1979, (French translation 1982). Zbl0502.53003MR728386
  25. [25] Drach J., Essai sur une théorie générale de l'intégration et sur la classification des transcendantes, Ann. Sci. École Normale Sup., Sér. 315 (1898) 243-384. Zbl29.0244.02MR1508959JFM29.0349.06
  26. [26] Drach J., Sur le problème logique de l'intégration des équations différentielles, Ann. Fac. Sci. Univ. Toulouse, Sér. 210 (1908) 393-472. Zbl41.0416.03MR1508305JFM41.0416.03
  27. [27] Ferrer S., Mondéjar F., On the non-integrability of the Zeemann–Stark Hamiltonian system, Comm. Math. Phys.208 (1999) 55-63. Zbl0988.37072
  28. [28] Ferrer S., Mondéjar F., Non-integrability of the 3-D Hydrogen atom under motional Stark effect or circularly polarized microwave combined with magnetic fields, Phys. Lett. A264 (1999) 74-83. 
  29. [29] Ferrer S., Mondéjar F., On the non-integrability of the generalized van der Waals Hamiltonian, J. Math. Phys.41 (2000) 5445-5452. Zbl0997.37031MR1770965
  30. [30] Fontich E., Simó C., Invariant manifolds for near identity differentiable maps and splitting of separatrices, Erg. Th. & Dyn. Systems10 (1990) 319-346. Zbl0706.58060MR1062761
  31. [31] Fontich E., Simó C., The splitting of separatrices for analytic diffeomorphisms, Erg. Th. & Dyn. Systems10 (1990) 295-318. Zbl0706.58061MR1062760
  32. [32] Grothendieck A., Techniques de construction en géométrie analytique VII, Séminaire Henri Cartan, 13-ème année 1960/61, vol. 14, W.A. Benjamin, 1967. 
  33. [33] Hénon M., Heiles C., The applicability of the third integral of motion: Some numerical experiments, Astronom. J.69 (1964) 73-79. MR158746
  34. [34] Irigoyen M., Simó C., Non-integrability of the J 2 problem, Celest. Mech.55 (1993) 281-287. Zbl0767.70015
  35. [35] Ito H., Non-integrability of the Hénon–Heiles system and a theorem of Ziglin, Koday Math. J.8 (1985) 129-138. Zbl0577.58016
  36. [36] Ito H., On the holonomy group associated with analytic continuations of solutions for integrable systems, Boletim da Soc. Brasil. de Matemática21 (1990) 95-120. Zbl0762.58015MR1139560
  37. [37] Juillard Tosel E., Non-integrabilité algébrique et méromorphe de problèmes de N corps, Thèse Univ. Paris VI, janvier 1999. 
  38. [38] Juillard Tosel E., Meromorphic parametric non-integrability; the inverse square potential, Arch. Rat. Mech. Anal.152 (2000) 187-207. Zbl0963.70010MR1764944
  39. [39] Kolar I., Michor P., Slovak J., Natural Operations in Differential Geometry, Springer-Verlag, 1991. Zbl0782.53013MR1202431
  40. [40] Levine H.I., Singularities of differentiable mappings, in: Proceedings of Liverpool Singularities Symposium I, Lecture Notes in Math., vol. 192, 1971. Zbl0216.45803
  41. [41] Llibre J., Simó C., Homoclinic phenomena in the three-body problem, J. Differential Equations37 (1980) 444-465. Zbl0445.70005MR590002
  42. [42] Llibre J., Simó C., Oscillatory solutions in the planar restricted three-body problem, Math. Ann.248 (1980) 153-184. Zbl0505.70010MR573346
  43. [43] Llibre J., Martínez R., Simó C., Transversality of the invariant manifolds associated to the Lyapunov family of periodic orbits near L 2 in the Restricted Three Body Problem, J. Differential Equations58 (1985) 104-156. Zbl0594.70013MR791842
  44. [44] Maciejewski A.J., Non-integrability of certain Hamiltonian systems, applications of the Morales–Ramis differential Galois extension of Ziglin theory, Banach Center Publications58 (2002) 139-150. Zbl1033.37028
  45. [45] Maciejewski A.J., Przybylska M., Non-integrability of restricted two-body problems in constant curvature spaces, Regul. Chaotic Dyn.8 (4) (2003) 413-430. Zbl1048.37052MR2023045
  46. [46] Maciejewski A.J., Przybylska M., Non-integrability of the problem of a rigid satellite in gravitational and magnetic fields, Celest. Mech. Dynam. Astron.87 (2003) 317-351. Zbl1106.70330MR2027746
  47. [47] Maciejewski A.J., Przybylska M., Non-integrability of the Suslov problem, J. Math. Phys.45 (2004) 1065-1078. Zbl1070.70003
  48. [48] Maciejewski A.J., Przybylska M., Non-integrability of the generalised two fixed centres problem, Celest. Mech. Dynam. Astron.89 (2004) 145-164. Zbl1132.70006MR2086188
  49. [49] Maciejewski A.J., Przybylska M., All meromorphically integrable 2D Hamiltonian systems with homogeneous potential of degree 3, Phys. Lett. A327 (2004) 461-473. Zbl1138.37325MR2086138
  50. [50] Maciejewski A.J., Przybylska M., Differential Galois approach to the non-integrability of the heavy top problem, Ann. Fac. Sci. Toulouse Sér. 614 (2005) 123-160. Zbl1089.70002MR2118036
  51. [51] Maciejewski A.J., Przybylska M., Stachowiak T., Non integrability of Gross–Neveu systems, Physica D201 (2005) 249-267. Zbl1088.37028
  52. [52] Maciejewski A.J., Przybylska M., Weil J.-A., Non-integrability of the generalized spring-pendulum problem, J. Phys. A: Math. Gen.37 (2004) 2579-2597. Zbl1076.70010MR2047228
  53. [53] Maciejewski A.J., Strelcyn J.M., Szydlowski M., Non-integrability of Bianchi VIII Hamiltonian system, J. Math. Phys.42 (2001) 1728-1743. Zbl1005.37057MR1820428
  54. [54] Maciejewski A.J., Szydlowski M., Towards a description of complexity of the simplest cosmological systems, J. Phys. A: Math. Gen.33 (2000) 9241-9254. Zbl0970.83011MR1804891
  55. [55] Maciejewski A.J., Szydlowski M., Integrability and non-integrability of planar Hamiltonian systems of cosmological origin, J. Nonlinear Math. Phys.8 (2001) 200-206. Zbl0979.83044MR1821531
  56. [56] Malgrange B., Le groupoïde de Galois d'un feuilletage, L'enseignement mathématique38 (2) (2001) 465-501. Zbl1033.32020MR1929336
  57. [57] Malgrange B., On the non linear Galois theory, Chinese Ann. Math. Ser. B23 (2) (2002) 219-226. Zbl1009.12005
  58. [58] Martinet J., Singularités des fonctions et applications différentiables, Pontificia Universidade Católica do Rio de Janeiro (PUC), 1974. Zbl0389.58005MR464292
  59. [59] Morales-Ruiz J.J., Differential Galois Theory and Non-Integrability of Hamiltonian Systems, Progress in Mathematics, vol. 179, Birkhäuser, 1999. Zbl0934.12003MR1713573
  60. [60] Morales-Ruiz J.J., Kovalevskaya, Liapounov, Painlevé, Ziglin and the differential Galois theory, Regular Chaotic Dynam.5 (2000) 251-272. Zbl0984.34075MR1789476
  61. [61] Morales-Ruiz J.J., Peris J.M., On a Galoisian approach to the splitting of separatrices, Ann. Fac. Sci. Toulouse Math.8 (1999) 125-141. Zbl0971.34076MR1721562
  62. [62] Morales-Ruiz J.J., Ramis J.P., Galoisian obstructions to integrability of Hamiltonian systems, Methods Appl. Anal.8 (2001) 33-96. Zbl1140.37352MR1867495
  63. [63] Morales-Ruiz J.J., Ramis J.P., Galoisian obstructions to integrability of Hamiltonian systems II, Methods Appl. Anal.8 (2001) 97-112. Zbl1140.37354
  64. [64] Morales-Ruiz J.J., Ramis J.P., A note on the non-integrability of some Hamiltonian systems with a homogeneous potential, Methods Appl. Anal.8 (2001) 113-120. Zbl1140.37353MR1867496
  65. [65] Morales-Ruiz J.J., Simó C., Non-integrability criteria for Hamiltonians in the case of Lamé normal variational equations, J. Differential Equations129 (1996) 111-135. Zbl0866.58034MR1400798
  66. [66] Morales-Ruiz J.J., Simó C., Simon S., Algebraic proof of the non-integrability of Hill's problem, Ergod. Th. & Dynam. Sys.25 (2005) 1237-1256. Zbl1078.70014MR2158404
  67. [67] Moser J., Stable and Random Motions in Dynamical Systems, Annals of Mathematics Studies, Princeton Univ. Press, 1973. Zbl0271.70009MR442980
  68. [68] Nakagawa K., Direct construction of polynomial first integrals for Hamiltonian systems with a two-dimensional homogeneous polynomial potential, Dep. of Astronomical Science, The Graduate University for Advanced Study and the National Astronomical Observatory of Japan, Ph.D. Thesis, 2002. 
  69. [69] Nakagawa K., Yoshida H., A necessary condition for the integrability of homogeneous Hamiltonian systems with two degrees of freedom, J. Phys. A: Math. Gen.34 (2001) 2137-2148. Zbl1054.37037MR1831282
  70. [70] Neishtadt A.I., The separation of motions in systems with rapidly rotating phase, Prikladnaja Matematika i Mekhanika48 (1984) 133-139. Zbl0571.70022MR802878
  71. [71] Poincaré H., Les Méthodes Nouvelles de la Mécanique Céleste, vol. I, Gauthiers–Villars, Paris, 1892. Zbl0651.70002
  72. [72] Saenz A.W., Nonintegrability of the Dragt–Finn model of magnetic confinement: A Galoisian-group approach, Physica D144 (2000) 37-43. Zbl0958.37029
  73. [73] Serre J-P., Géométrie algébrique et géométrie analytique, Ann. Inst. Fourier Grenoble (1956) 1-42. Zbl0075.30401MR82175
  74. [74] Serre J-P., Espaces fibrés algébriques, in: Séminaire Claude Chavalley, 1958, tome 3, exp. no 1, pp. 1–37. 
  75. [75] Simó C., Analytical and numerical computation of invariant manifolds, in: Benest D., Froeschlé C. (Eds.), Modern Methods in Celestial Mechanics, Editions Frontières, 1990, pp. 285-330, Also available at, http://www.maia.ub.es/dsg/. 
  76. [76] Simó C., Measuring the lack of integrability in the J 2 problem, in: Roy A.E. (Ed.), Predictability, Stability and Chaos in the N-Body Dynamical Systems, Plenum Press, 1991, pp. 305-309. MR1210981
  77. [77] Terng C.L., Natural vector bundles and natural differential operators, Amer. J. Math.100 (1978) 775-828. Zbl0422.58001MR509074
  78. [78] Tsygvintsev A., Sur l'absence d'une intégrale première méromorphe supplémentaire dans le problème plan des trois corps, C. R. Acad. Sci. Paris Série I333 (2001) 241-244. Zbl0964.70011MR1847358
  79. [79] Umemura H., Differential Galois theory of infinite dimension, Nagoya Math. J.144 (1996) 59-135. Zbl0878.12002MR1425592
  80. [80] van der Put M., Singer M., Galois Theory of Linear Differential Equations, Springer, Berlin, 2003. Zbl1036.12008MR1960772
  81. [81] Vigo-Aguilar M.I., No integrabilidad del problema del satélite, Ph.D. Thesis, Departamento de Análisis Matemático y Matemática Aplicada, Universidad de Alicante, 1999. 
  82. [82] Yagasaki K., Galoisian obstructions to integrability and Melnikov criteria for chaos in two-degree-of-freedom Hamiltonian systems with saddle-centers, Nonlinearity16 (2003) 2003-2013. Zbl1070.37038MR2012852
  83. [83] Yagasaki K., Non-integrability of an infinity-degree-of-freedom model for unforced and undamped straight beams, J. Appl. Mech.70 (2003) 732-738. Zbl1110.74769MR2011650
  84. [84] Yoshida H., A new necessary condition for the integrability of Hamiltonian systems with a two dimensional homogeneous potential, Physica D128 (1999) 53-69. Zbl0945.37015MR1685248
  85. [85] Yoshida H., Justification of Painlevé Analysis for Hamiltonian systems by differential Galois theory, Physica A228 (2000) 424-430. MR1808183
  86. [86] Ziglin S.L., Branching of solutions and non-existence of first integrals in Hamiltonian mechanics I, Funct. Anal. Appl.16 (1982) 181-189. Zbl0524.58015

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.