The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 2 of 2

Showing per page

Order by Relevance | Title | Year of publication

2-factors in claw-free graphs with locally disconnected vertices

Mingqiang AnLiming XiongRunli Tian — 2015

Czechoslovak Mathematical Journal

An edge of G is singular if it does not lie on any triangle of G ; otherwise, it is non-singular. A vertex u of a graph G is called locally connected if the induced subgraph G [ N ( u ) ] by its neighborhood is connected; otherwise, it is called locally disconnected. In this paper, we prove that if a connected claw-free graph G of order at least three satisfies the following two conditions: (i) for each locally disconnected vertex v of degree at least 3 in G , there is a nonnegative integer s such that v lies...

Two operations on a graph preserving the (non)existence of 2-factors in its line graph

Mingqiang AnHong-Jian LaiHao LiGuifu SuRunli TianLiming Xiong — 2014

Czechoslovak Mathematical Journal

Let G = ( V ( G ) , E ( G ) ) be a graph. Gould and Hynds (1999) showed a well-known characterization of G by its line graph L ( G ) that has a 2-factor. In this paper, by defining two operations, we present a characterization for a graph G to have a 2-factor in its line graph L ( G ) . A graph G is called N 2 -locally connected if for every vertex x V ( G ) , G [ { y V ( G ) 1 dist G ( x , y ) 2 } ] is connected. By applying the new characterization, we prove that every claw-free graph in which every edge lies on a cycle of length at most five and in which every vertex...

Page 1

Download Results (CSV)