The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 20 of 45

Showing per page

Order by Relevance | Title | Year of publication

On invariant measures for power bounded positive operators

Ryotaro Sato — 1996

Studia Mathematica

We give a counterexample showing that ( I - T * ) L ¯ L + = 0 does not imply the existence of a strictly positive function u in L 1 with Tu = u, where T is a power bounded positive linear operator on L 1 of a σ-finite measure space. This settles a conjecture by Brunel, Horowitz, and Lin.

Pointwise ergodic theorems in Lorentz spaces L(p,q) for null preserving transformations

Ryotaro Sato — 1995

Studia Mathematica

Let (X,ℱ,µ) be a finite measure space and τ a null preserving transformation on (X,ℱ,µ). Functions in Lorentz spaces L(p,q) associated with the measure μ are considered for pointwise ergodic theorems. Necessary and sufficient conditions are given in order that for any f in L(p,q) the ergodic average n - 1 i = 0 n - 1 f τ i ( x ) converges almost everywhere to a function f* in L ( p 1 , q 1 ] , where (pq) and ( p 1 , q 1 ] are assumed to be in the set ( r , s ) : r = s = 1 , o r 1 < r < a n d 1 s , o r r = s = . Results due to C. Ryll-Nardzewski, S. Gładysz, and I. Assani and J. Woś are generalized and unified...

Vector-valued ergodic theorems for multiparameter additive processes

Ryotaro Sato — 1999

Colloquium Mathematicae

Let X be a reflexive Banach space and (Ω,Σ,μ) be a σ-finite measure space. Let d ≥ 1 be an integer and T=T(u):u=( u 1 , ... , u d ) , u i ≥ 0, 1 ≤ i ≤ d be a strongly measurable d-parameter semigroup of linear contractions on L 1 ((Ω,Σ,μ);X). We assume that to each T(u) there corresponds a positive linear contraction P(u) defined on L 1 ((Ω,Σ,μ);ℝ) with the property that ∥ T(u)f(ω)∥ ≤ P(u)∥f(·)∥(ω) almost everywhere on Ω for all f ∈ L 1 ((Ω,Σ,μ);X). We then prove stochastic and pointwise ergodic theorems for a d-parameter...

A general differentiation theorem for superadditive processes

Ryotaro Sato — 2000

Colloquium Mathematicae

Let L be a Banach lattice of real-valued measurable functions on a σ-finite measure space and T= T t : t < 0 be a strongly continuous semigroup of positive linear operators on the Banach lattice L. Under some suitable norm conditions on L we prove a general differentiation theorem for superadditive processes in L with respect to the semigroup T.

Pointwise ergodic theorems for functions in Lorentz spaces L p q with p ≠ ∞

Ryotaro Sato — 1994

Studia Mathematica

Let τ be a null preserving point transformation on a finite measure space. Assuming τ is invertible, P. Ortega Salvador has recently obtained sufficient conditions for the almost everywhere convergence of the ergodic averages in L p q with 1 < p < ∞, 1 < q < ∞. In this paper we obtain necessary and sufficient conditions for the almost everywhere convergence, without assuming that τ is invertible and only assuming that p ≠ ∞.

On a vector-valued local ergodic theorem in L

Ryotaro Sato — 1999

Studia Mathematica

Let T = T ( u ) : u d + be a strongly continuous d-dimensional semigroup of linear contractions on L 1 ( ( Ω , Σ , μ ) ; X ) , where (Ω,Σ,μ) is a σ-finite measure space and X is a reflexive Banach space. Since L 1 ( ( Ω , Σ , μ ) ; X ) * = L ( ( Ω , Σ , μ ) ; X * ) , the adjoint semigroup T * = T * ( u ) : u d + becomes a weak*-continuous semigroup of linear contractions acting on L ( ( Ω , Σ , μ ) ; X * ) . In this paper the local ergodic theorem is studied for the adjoint semigroup T*. Assuming that each T(u), u d + , has a contraction majorant P(u) defined on L 1 ( ( Ω , Σ , μ ) ; ) , that is, P(u) is a positive linear contraction on L 1 ( ( Ω , Σ , μ ) ; ) such that T ( u ) f ( ω ) P ( u ) f ( · ) ( ω ) almost everywhere...

Page 1 Next

Download Results (CSV)