The geometry of -spaces over atomless measure spaces and the Daugavet property.
We define an interpolation norm on tensor products of p-integrable function spaces and Banach spaces which satisfies intermediate properties between the Bochner norm and the injective norm. We obtain substitutes of the Chevet-Persson-Saphar inequalities for this case. We also use the calculus of traced tensor norms in order to obtain a tensor product description of the tensor norm associated to the interpolated ideal of (p, sigma)-absolutely continuous operators defined by Jarchow and Matter. As...
In this paper we analyse a definition of a product of Banach spaces that is naturally associated by duality with a space of operators that can be considered as a generalization of the notion of space of multiplication operators. This dual relation allows to understand several constructions coming from different fields of functional analysis that can be seen as instances of the abstract one when a particular product is considered. Some relevant examples and applications are shown, regarding pointwise...
We give an explicit description of a tensor norm equivalent on to the associated tensor norm to the ideal of -absolutely summing operators. As a consequence, we describe a tensor norm on the class of Banach spaces which is equivalent to the left projective tensor norm associated to .
We introduce a new (extended) quasi-metric on the so-called dual p-complexity space, which is suitable to give a quantitative measure of the improvement in complexity obtained when a complexity function is replaced by a more efficient complexity function on all inputs, and show that this distance function has the advantage of possessing rich topological and quasi-metric properties. In particular, its induced topology is Hausdorff and completely regular. Our approach is applied to the measurement...
Page 1