The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
We analyze Euler-Galerkin approximations (conforming finite elements in space and implicit Euler in time) to coupled PDE systems in which one dependent variable, say , is governed by an elliptic equation and the other, say , by a parabolic-like equation. The underlying application is the poroelasticity system within the quasi-static assumption. Different polynomial orders are used for the - and -components to obtain optimally convergent a priori bounds for all the terms in the error energy norm....
We analyze Euler-Galerkin approximations (conforming finite elements in
space and implicit Euler in time) to
coupled PDE systems in which one dependent
variable, say , is governed by an elliptic equation and the other,
say , by a parabolic-like equation. The underlying application is the
poroelasticity system within the quasi-static assumption. Different
polynomial orders are used for the - and -components to
obtain optimally convergent bounds for all
the terms in the error energy norm.
Then,...
Download Results (CSV)